[1] Kojima, A. et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society 131, 6050-6051 (2009). doi: 10.1021/ja809598r
[2] Park, J. et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724-730 (2023). doi: 10.1038/s41586-023-05825-y
[3] Polyzoidis, C., Rogdakis, K. & Kymakis, E. Indoor perovskite photovoltaics for the internet of things—challenges and opportunities toward market uptake. Advanced Energy Materials 11, 2101854 (2021). doi: 10.1002/aenm.202101854
[4] Wojciechowski, K., Forgács, D. & Rivera, T. Industrial opportunities and challenges for perovskite photovoltaic technology. Solar RRL 3, 1900144 (2019). doi: 10.1002/solr.201900144
[5] Martulli, A. et al. Towards market commercialization: lifecycle economic and environmental evaluation of scalable perovskite solar cells. Progress in Photovoltaics: Research and Applications 31, 180-194 (2023). doi: 10.1002/pip.3623
[6] Barker, A. J. et al. Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films. ACS Energy Letters 2, 1416-1424 (2017). doi: 10.1021/acsenergylett.7b00282
[7] Chen, S. et al. Exploring the stability of novel wide bandgap perovskites by a robot based high throughput approach. Advanced Energy Materials 8, 1701543 (2018). doi: 10.1002/aenm.201701543
[8] Li, Z. et al. Minimized surface deficiency on wide-bandgap perovskite for efficient indoor photovoltaics. Nano Energy 78, 105377 (2020). doi: 10.1016/j.nanoen.2020.105377
[9] Chen, C. et al. Arylammonium-assisted reduction of the open-circuit voltage deficit in wide-bandgap perovskite solar cells: the role of suppressed ion migration. ACS Energy Letters 5, 2560-2568 (2020). doi: 10.1021/acsenergylett.0c01350
[10] Correa-Baena, J. P. et al. The rapid evolution of highly efficient perovskite solar cells. Energy & Environmental Science 10, 710-727 (2017).
[11] Rehman, W. et al. Charge-carrier dynamics and mobilities in formamidinium lead mixed-halide perovskites. Advanced Materials 27, 7938-7944 (2015). doi: 10.1002/adma.201502969
[12] Rehman, W. et al. Photovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic properties. Energy & Environmental Science 10, 361-369 (2017).
[13] Bush, K. A. et al. Compositional engineering for efficient wide band gap perovskites with improved stability to photoinduced phase segregation. ACS Energy Letters 3, 428-435 (2018). doi: 10.1021/acsenergylett.7b01255
[14] Xu, F. et al. Challenges and perspectives toward future wide-bandgap mixed-halide perovskite photovoltaics. Advanced Energy Materials 13, 2203911 (2023). doi: 10.1002/aenm.202203911
[15] Saliba, M. et al. Perovskite solar cells: from the atomic level to film quality and device performance. Angewandte Chemie International Edition 57, 2554-2569 (2018). doi: 10.1002/anie.201703226
[16] Xu, J. X. et al. Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems. Science 367, 1097-1104 (2020). doi: 10.1126/science.aaz5074
[17] Wen, J. et al. Steric engineering enables efficient and photostable wide-bandgap perovskites for all-perovskite tandem solar cells. Advanced Materials 34, 2110356 (2022). doi: 10.1002/adma.202110356
[18] Zhou, Y. et al. Benzylamine-treated wide-bandgap perovskite with high thermal-photostability and photovoltaic performance. Advanced Energy Materials 7, 1701048 (2017). doi: 10.1002/aenm.201701048
[19] Wang, C. et al. Suppressing phase segregation in wide bandgap perovskites for monolithic perovskite/organic tandem solar cells with reduced voltage loss. Small 18, 2204081 (2022). doi: 10.1002/smll.202204081
[20] Liang, J. W. et al. Suppressing the phase segregation with potassium for highly efficient and photostable inverted wide-band gap halide perovskite solar cells. ACS Applied Materials & Interfaces 12, 48458-48466 (2020).
[21] Li, G. et al. Co-solvent engineering contributing to achieve high-performance perovskite solar cells and modules based on anti-solvent free technology. Small 19, 2301323 (2023). doi: 10.1002/smll.202301323
[22] Han, E. Q. et al. High-performance indoor perovskite solar cells by self-suppression of intrinsic defects via a facile solvent-engineering strategy. Small 20, 2305192 (2024). doi: 10.1002/smll.202305192
[23] Han, Y. P. et al. Review of two-step method for lead halide perovskite solar cells. Solar RRL 6, 2101007 (2022). doi: 10.1002/solr.202101007
[24] Wang, Z. Y. et al. Antisolvent- and annealing-free deposition for highly stable efficient perovskite solar cells via modified ZnO. Advanced Science 8, 2002860 (2021). doi: 10.1002/advs.202002860
[25] Lohmann, K. B. et al. Solvent-free method for defect reduction and improved performance of p-i-n vapor-deposited perovskite solar cells. ACS Energy Letters 7, 1903-1911 (2022). doi: 10.1021/acsenergylett.2c00865
[26] Cai, B., Zhang, W. H. & Qiu, J. S. Solvent engineering of spin-coating solutions for planar-structured high-efficiency perovskite solar cells. Chinese Journal of Catalysis 36, 1183-1190 (2015). doi: 10.1016/S1872-2067(15)60929-9
[27] Liu, Y. W. et al. Solvent engineering of perovskite crystallization for high band gap FAPbBr3 perovskite solar cells prepared in ambient condition. ACS Applied Energy Materials 6, 7102-7108 (2023). doi: 10.1021/acsaem.3c00791
[28] Lee, J. W. et al. Tuning molecular interactions for highly reproducible and efficient formamidinium perovskite solar cells via adduct approach. Journal of the American Chemical Society 140, 6317-6324 (2018). doi: 10.1021/jacs.8b01037
[29] Chen, H. Q. et al. Solvent engineering for high-performance two-dimensional ruddlesden-popper CsPbI3 solar cells. ACS Applied Energy Materials 5, 11807-11814 (2022). doi: 10.1021/acsaem.2c02345
[30] Li, Y. Y. et al. Solvent modification to suppress halide segregation in mixed halide perovskite solar cells. Journal of Materials Science 55, 9787-9794 (2020). doi: 10.1007/s10853-020-04697-1
[31] McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151-155 (2016). doi: 10.1126/science.aad5845
[32] Zhou, Y. et al. Composition-tuned wide bandgap perovskites: from grain engineering to stability and performance improvement. Advanced Functional Materials 28, 1803130 (2018). doi: 10.1002/adfm.201803130
[33] Oliver, R. D. J. et al. Understanding and suppressing non-radiative losses in methylammonium-free wide-bandgap perovskite solar cells. Energy & Environmental Science 15, 714-726 (2022).
[34] Yu, F. et al. Efficient and stable wide-bandgap perovskite solar cells derived from a thermodynamic phase-pure intermediate. Solar RRL 6, 2100906 (2022). doi: 10.1002/solr.202100906
[35] Li, C. et al. Emission enhancement and intermittency in polycrystalline organolead halide perovskite films. Molecules 21, 1081 (2016). doi: 10.3390/molecules21081081
[36] Chen, J. et al. Carrier dynamic process in all-inorganic halide perovskites explored by photoluminescence spectra. Photonics Research 9, 151-170 (2021). doi: 10.1364/PRJ.410290
[37] Péan, E. V. et al. Interpreting time-resolved photoluminescence of perovskite materials. Physical Chemistry Chemical Physics 22, 28345-28358 (2020). doi: 10.1039/D0CP04950F
[38] Kim, J. B. et al. Wrinkles and deep folds as photonic structures in photovoltaics. Nature Photonics 6, 327-332 (2012). doi: 10.1038/nphoton.2012.70
[39] Guerrero, A. et al. Properties of contact and bulk impedances in hybrid lead halide perovskite solar cells including inductive loop elements. The Journal of Physical Chemistry C 120, 8023-8032 (2016). doi: 10.1021/acs.jpcc.6b01728
[40] These, A. et al. Beginner’s guide to visual analysis of perovskite and organic solar cell current density-voltage characteristics. Advanced Energy Materials 14, 2400055 (2024). doi: 10.1002/aenm.202400055
[41] Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science 7, 982-988 (2014).
[42] Hummelen, J. C. et al. Preparation and characterization of fulleroid and methanofullerene derivatives. The Journal of Organic Chemistry 60, 532-538 (1995). doi: 10.1021/jo00108a012