[1] Yu, N. F. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014). doi: 10.1038/nmat3839
[2] Pahlevaninezhad, H. et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photonics 12, 540–547 (2018). doi: 10.1038/s41566-018-0224-2
[3] Chen, K. et al. Moiré nanosphere lithography. ACS Nano 9, 6031–6040 (2015). doi: 10.1021/acsnano.5b00978
[4] Tittl, A. et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360, 1105–1109 (2018). doi: 10.1126/science.aas9768
[5] Silva, A. et al. Performing mathematical operations with metamaterials. Science 343, 160–163 (2014). doi: 10.1126/science.1242818
[6] Mueller, J. P. B. et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett. 118, 113901 (2017). doi: 10.1103/PhysRevLett.118.113901
[7] Iyer, P. P., Pendharkar, M. & Schuller, J. A. Electrically reconfigurable metasurfaces using heterojunction resonators. Adv. Opt. Mater. 4, 1582–1588 (2016). doi: 10.1002/adom.201600297
[8] Ding, F. et al. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach. ACS Nano 9, 4111–4119 (2015). doi: 10.1021/acsnano.5b00218
[9] Arbabi, A. et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015). doi: 10.1038/nnano.2015.186
[10] Yang, J. & Fan, J. A. Topology-optimized metasurfaces: impact of initial geometric layout. Opt. Lett. 42, 3161–3164 (2017). doi: 10.1364/OL.42.003161
[11] Lalau-Keraly, C. M. et al. Adjoint shape optimization applied to electromagnetic design. Opt. Express 21, 21693–21701 (2013). doi: 10.1364/OE.21.021693
[12] Molesky, S. et al. Inverse design in nanophotonics. Nat. Photonics 12, 659–670 (2018). doi: 10.1038/s41566-018-0246-9
[13] Frandsen, L. H. et al. Broadband photonic crystal waveguide 60° bend obtained utilizing topology optimization. Opt. Express 12, 5916–5921 (2004). doi: 10.1364/OPEX.12.005916
[14] Borel, P. I. et al. Topology optimization and fabrication of photonic crystal structures. Opt. Express 12, 1996–2001 (2004). doi: 10.1364/OPEX.12.001996
[15] Piggot, A. Y. et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photonics 9, 374–377 (2015). doi: 10.1038/nphoton.2015.69
[16] Xiao, T. P. et al. Diffractive spectral-splitting optical element designed by adjoint-based electromagnetic optimization and fabricated by femtosecond 3D direct laser writing. ACS Photonics 3, 886–894 (2016). doi: 10.1021/acsphotonics.6b00066
[17] Sell, D. et al. Ultra-high-efficiency anomalous refraction with dielectric metasurfaces. ACS Photonics 5, 2402–2407 (2018). doi: 10.1021/acsphotonics.8b00183
[18] Sell, D. et al. Periodic dielectric metasurfaces with high-efficiency, multiwavelength functionalities. Adv. Opt. Mater. 5, 1700645 (2017). doi: 10.1002/adom.201700645
[19] Lin, Z. et al. Topology-optimized multilayered metaoptics. Phys. Rev. Appl. 9, 044030 (2018). doi: 10.1103/PhysRevApplied.9.044030
[20] Lalanne, P. & Morris, G. M. Highly improved convergence of the coupled-wave method for TM polarization. J. Opt. Soc. Am. A 13, 779–784 (1996).
[21] Hugonin, J. P., & Lalanne, P. Reticolo Software for Grating Analysis. (Institut d'Optique, 2005).
[22] Knop, K. Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves. J. Opt. Soc. Am. 68, 1206–1210 (1978). doi: 10.1364/JOSA.68.001206
[23] Li, L. F. Use of Fourier series in the analysis of discontinuous periodic structures. J. Opt. Soc. Am. A 13, 1870–1876 (1996). doi: 10.1364/JOSAA.13.001870
[24] Coppersmith, D. & Winograd, S. Matrix multiplication via arithmetic progressions. J. Symb. Comput. 9, 251–280 (1990). doi: 10.1016/S0747-7171(08)80013-2
[25] Patterson, D. A. & Hennessy, J. L. Computer Organization and Design. 5th edn. (Morgan Kaufmann, Waltham: MK, 2014).
[26] Strehl, K. Aplanatische und fehlerhafte abbildung im fernrohr. Z. für Instrum. 15, 362–370 (1895).
[27] Arbabi, A. et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 6, 7069 (2015). doi: 10.1038/ncomms8069
[28] Sell, D. et al. Large-angle, multifunctional metagratings based on freeform multimode geometries. Nano Lett. 17, 3752–3757 (2017). doi: 10.1021/acs.nanolett.7b01082
[29] Yang, J. J., Hugonin, J. P. & Lalanne, P. Near-to-far field transformations for radiative and guided waves. ACS Photonics 3, 395–402 (2016). doi: 10.1021/acsphotonics.5b00559
[30] Chew, W. C. & Weedon, W. H. A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates. Microw. Opt. Technol. Lett. 7, 599–604 (1994). doi: 10.1002/mop.4650071304
[31] Chew, W. C., Jin, J. M. & Michielssen, E. Complex coordinate stretching as a generalized absorbing boundary condition. Microw. Opt. Technol. Lett. 15, 363–369 (1997). doi: 10.1002/(SICI)1098-2760(19970820)15:6<363::AID-MOP8>3.0.CO;2-C
[32] Teixeira, F. L. & Chew, W. C. Differential forms, metrics, and the reflectionless absorption of electromagnetic waves. J. Electromagn. Waves Appl. 13, 665–686 (1999). doi: 10.1163/156939399X01104
[33] Edee, K., Granet, G. & Plumey, J. P. Complex coordinate implementation in the curvilinear coordinate method: application to plane-wave diffraction by nonperiodic rough surfaces. J. Opt. Soc. Am. A 24, 1097–1102 (2007). doi: 10.1364/JOSAA.24.001097
[34] Stratton, J. A. & Chu, L. J. Diffraction theory of electromagnetic waves. Phys. Rev. 56, 99–107 (1939). doi: 10.1103/PhysRev.56.99
[35] Yang, J. J. & Fan, J. A. Analysis of material selection on dielectric metasurface performance. Opt. Express 25, 23899–23909 (2017). doi: 10.1364/OE.25.023899
[36] Sell, D. et al. Visible light metasurfaces based on single-crystal silicon. ACS Photonics 3, 1919–1925 (2016). doi: 10.1021/acsphotonics.6b00436
[37] Palmer, C. & Loewen, E. Diffraction Grating Handbook. 6th edn. (New York: Newport Corporation, Rochester, 2005).
[38] Yang, J. J., Sell, D. & Fan, J. A. Freeform metagratings based on complex light scattering dynamics for extreme, high efficiency beam steering. Ann. der Phys. 530, 1700302 (2018). doi: 10.1002/andp.201700302
[39] Chung, J. W. et al. Seamless on-wafer integration of Si(100) MOSFETs and GaN HEMTs. IEEE Electron Device Lett. 30, 1015–1017 (2009). doi: 10.1109/LED.2009.2027914
[40] Shrestha, S. et al. Broadband achromatic dielectric metalenses. Light.: Sci. Appl. 7, 85 (2018). doi: 10.1038/s41377-018-0078-x
[41] Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2018). doi: 10.1038/s41565-017-0034-6
[42] Paniagua-Dominguez, R. et al. A metalens with a near-unity numerical aperture. Nano Lett. 18, 2124–2132 (2018). doi: 10.1021/acs.nanolett.8b00368