[1] |
Yonkoski, R. & Soane, D. Model for spin coating in microelectronic applications. Journal of applied physics 72, 725-740 (1992). doi: 10.1063/1.351859 |
[2] |
Weinstein, S. J. & Ruschak, K. J. Coating flows. Annu. Rev. Fluid Mech. 36, 29-53 (2004). doi: 10.1146/annurev.fluid.36.050802.122049 |
[3] |
Rosli, N. & Amagai, K. Measurement of interfacial profiles of wavy film flow on inclined wall. In IOP Conference Series: Materials Science and Engineering, Vol. 114, 012028 (IOP Publishing, 2016). |
[4] |
Figliuzzi, B., et al. Numerical simulation of thin paint film flow. Journal of Mathematics in Industry 2, 1-20 (2012). doi: 10.1186/2190-5983-2-1 |
[5] |
Içten, E., et al. Dropwise additive manufacturing of pharmaceutical products for melt-based dosage forms. Journal of pharmaceutical sciences 104, 1641-1649 (2015). doi: 10.1002/jps.24367 |
[6] |
Gilani, N., et al. Insights into drop-on-demand metal additive manufacturing through an integrated experimental and computational study. Additive Manufacturing 48, 102402 (2021). doi: 10.1016/j.addma.2021.102402 |
[7] |
Zhang, F., Ya ng, X. & Wang, C. Liquid water removal from a polymer electrolyte fuel cell. Journal of the Electrochemical Society 153, A225 (2005). |
[8] |
Fouquet, N., et al. Model based pem fuel cell stateof-health monitoring via ac impedance measurements. Journal of Power Sources 159, 905-913 (2006). doi: 10.1016/j.jpowsour.2005.11.035 |
[9] |
Hadikhani, P., et al. Learning from droplet flows in microfluidic channels using deep neural networks. Scientific reports 9, 8114 (2019). doi: 10.1038/s41598-019-44556-x |
[10] |
Daly, G., Gaskell, P. & Veremieiev, S. Gravitydriven film flow down a uniformly heated smoothly corrugated rigid substrate. Journal of Fluid Mechanics 930, A23 (2022). doi: 10.1017/jfm.2021.920 |
[11] |
Sommer, O. & Wozniak, G. Über die ausbildung und form von flüssigen wülsten an gekrümmten festkorperkanten. Forschung im Ingenieurwesen 87, 1317-1331 (2023). doi: 10.1007/s10010-023-00679-2 |
[12] |
Krämer, V., et al. Numerical analysis of an adhering droplet applying an adapted feedback deceleration technique. International Journal of Multiphase Flow 145, 103808 (2021). doi: 10.1016/j.ijmultiphaseflow.2021.103808 |
[13] |
Wang, Z., et al. Digital holography as metrology tool at micro-nanoscale for soft matter. Light: Advanced Manufacturing 3, 151-176 (2022). doi: 10.37188/lam.2022.010 |
[14] |
Radner, H., et al. Field-programmable system-on-chipbased control system for real-time distortion correction in optical imaging. IEEE Transactions on Industrial Electronics 68, 3370-3379 (2020). |
[15] |
Radner, H., Büttner, L. & Czarske, J. Interferometric velocity measurements through a fluctuating interface using a fresnel guide star-based wavefront correction system. Optical Engineering 57, 084104-084104 (2018). |
[16] |
Bilsing, C., et al. 3d imaging with double-helix point spread function and dynamic aberration correction using a deformable mirror. Optics and Lasers in Engineering 154, 107044 (2022). doi: 10.1016/j.optlaseng.2022.107044 |
[17] |
Wang, R., J ia, H. & Duan, R. Experimental observation of flow reversal in thin liquid film flow falling on an inclined plate. Coatings 10, 599 (2020). doi: 10.3390/coatings10060599 |
[18] |
Merkle, F. et al. Successful tests of adaptive optics. The Messenger 58, 1-4 (1989). |
[19] |
Zepp, A., et al. Simulation-based design optimization of the holographic wavefront sensor in closed-loop adaptive optics. Light: Advanced Manufacturing 3, 384-399 (2022). |
[20] |
Toselli, I. & Gladysz, S. Improving system performance by using adaptive optics and aperture averaging for laser communications in oceanic turbulence. Optics Express 28, 17347-17361 (2020). doi: 10.1364/OE.394468 |
[21] |
Salter, P. S. & Booth, M. J. Adaptive optics in laser processing. Light: Science & Applications 8, 110 (2019). |
[22] |
Pilar, J., et al. Design and optimization of an adaptive optics system for a high-average-power multi-slab laser (hilase). Applied Optics 53, 3255-3261 (2014). doi: 10.1364/AO.53.003255 |
[23] |
Booth, M. J. Adaptive optical microscopy: the ongoing quest for a perfect image. Light: Science & Applications 3, e165-e165 (2014). |
[24] |
Mertz, J., Paudel, H. & Bifano, T. G. Field of view advantage of conjugate adaptive optics in microscopy applications. Applied optics 54, 3498-3506 (2015). doi: 10.1364/AO.54.003498 |
[25] |
Ragazzoni, R., Marchetti, E. & Valente, G. Adaptive-optics corrections available for the whole sky. Nature 403, 54-56 (2000). doi: 10.1038/47425 |
[26] |
Gladysz, S. et al. Lucky imaging and speckle discrimination for the detection of faint companions with adaptive optics. In Adaptive Optics Systems Vol. 7015, 690–701 (SPIE, 2008). |
[27] |
Thompson, L. A. & Gardner, C. S. Experiments on laser guide stars at mauna kea observatory for adaptive imaging in astronomy. Nature 328, 229-231 (1987). doi: 10.1038/328229a0 |
[28] |
Zappulla, R. & Romano, M. A systematic approach to determining the minimum sampling rate for real-time spacecraft control. In 27th AAS/AIAA Spaceflight Mechanics Meeting, AAS Paper, 17–424 (2017). |
[29] |
Burgmann, S., et al. Flow measurements in the wake of an adhering and oscillating droplet using laser-doppler velocity profile sensor. Experiments in Fluids 62, 1-16 (2021). doi: 10.1007/s00348-020-03089-0 |
[30] |
Tyson, R. K. & Frazier, B. W. Principles of adaptive optics (CRC press, 2022). |
[31] |
Zhou, Y., et al. Advances in 3d single particle localization microscopy. APL Photonics 4, (2019). |
[32] |
Pavani, S. R. P., et al. Three-dimensional, singlemolecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proceedings of the National Academy of Sciences 106, 2995-2999 (2009). doi: 10.1073/pnas.0900245106 |
[33] |
Carr, A. R., et al. Three-dimensional super-resolution in eukaryotic cells using the double-helix point spread function. Biophysical journal 112, 1444-1454 (2017). doi: 10.1016/j.bpj.2017.02.023 |
[34] |
Anand, V., et al. Three-dimensional incoherent imaging using spiral rotating point spread functions created by double-helix beams. Nanoscale Research Letters 17, 37 (2022). doi: 10.1186/s11671-022-03676-6 |
[35] |
Baránek, M. & Bouchal, Z. Optimizing the rotating point spread function by slm aided spiral phase modulation. In 19th Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics, Vol. 9441, 161–170 (Spie, 2014). |
[36] |
Wang, Z., et al. Single shot, three-dimensional fluorescence microscopy with a spatially rotating point spread function. Biomedical optics express 8, 5493-5506 (2017). doi: 10.1364/BOE.8.005493 |
[37] |
Häfner, M., Pruss, C. & Osten, W. Laser direct writing: Recent developments for the making of diffractive optics. Optik & Photonik 6, 40-43 (2011). |
[38] |
Zheng, M., et al. Fast measurement of the phase flicker of a digitally addressable lcos-slm. Optik 242, 167270 (2021). doi: 10.1016/j.ijleo.2021.167270 |
[39] |
Noblin, X., Buguin, A. & Brochard-Wyart, F. Vibrated sessile drops: Transition between pinned and mobile contact line oscillations. The European Physical Journal E 14, 395-404 (2004). doi: 10.1140/epje/i2004-10021-5 |
[40] |
Sharp, J. S., Farmer, D. J. & Kelly, J. Contact angle dependence of the resonant frequency of sessile water droplets. Langmuir 27, 9367-9371 (2011). doi: 10.1021/la201984y |
[41] |
Barwari, B., et al. Motion of adhering droplets induced by overlapping of gravitational and periodical acceleration. International Journal of Multiphase Flow 135, 103537 (2021). doi: 10.1016/j.ijmultiphaseflow.2020.103537 |
[42] |
Zhang, Y. & Gross, H. Systematic design of microscope objectives. part ⅰ: System review and analysis. Advanced Optical Technologies 8, 313-347 (2019). doi: 10.1515/aot-2019-0002 |
[43] |
Zhang, Y. & Gross, H. Systematic design of microscope objectives. part ⅱ: Lens modules and design principles. Advanced Optical Technologies 8, 349-384 (2019). doi: 10.1515/aot-2019-0013 |