[1] Bender, C. M. & Boettcher, S. Real spectra in non-hermitian hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998). doi: 10.1103/PhysRevLett.80.5243
[2] Hatano, N. & Nelson, D. R. Localization transitions in non-hermitian quantum mechanics. Phys. Rev. Lett. 77, 570–573 (1996). doi: 10.1103/PhysRevLett.77.570
[3] Berry, M. V. Optical lattices with PT symmetry are not transparent. J. Phys. A: Math. Theor. 41, 244007 (2008). doi: 10.1088/1751-8113/41/24/244007
[4] Zheng, C., Hao, L. & Long, G. L. Observation of a fast evolution in a parity-time-symmetric system. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 371, 20120053 (2013). doi: 10.1098/rsta.2012.0053
[5] El-Ganainy, R., Makris, K. G., Christodoulides, D. N. & Musslimani, Z. H. Theory of coupled optical PT-symmetric structures. Opt. Lett. 32, 2632–2634 (2007). doi: 10.1364/OL.32.002632
[6] Makris, K. G., El-Ganainy, R., Christodoulides, D. N. & Musslimani, Z. H. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008). doi: 10.1103/PhysRevLett.100.103904
[7] Musslimani, Z. H., Makris, K. G., El-Ganainy, R. & Christodoulides, D. N. Optical solitons in PT periodic potentials. Phys. Rev. Lett. 100, 030402 (2008). doi: 10.1103/PhysRevLett.100.030402
[8] Rüter, C. E. et al. Observation of parity–time symmetry in optics. Nat. Phys. 6, 192–195 (2010). doi: 10.1038/nphys1515
[9] Ruschhaupt, A., Delgado, F. & Muga, J. G. Physical realization of PT-symmetric potential scattering in a planar slab waveguide. J. Phys. A: Math. Gen. 38, L171–L176 (2005). doi: 10.1088/0305-4470/38/9/L03
[10] Klaiman, S., Günther, U. & Moiseyev, N. Visualization of branch points in PT-symmetric waveguides. Phys. Rev. Lett. 101, 080402 (2008). doi: 10.1103/PhysRevLett.101.080402
[11] Longhi, S. Quantum-optical analogies using photonic structures. Laser Photon Rev. 3, 243–261 (2009). doi: 10.1002/lpor.200810055
[12] Rodríguez-Lara, B. M., El-Ganainy, R. & Guerrero, J. Symmetry in optics and photonics: a group theory approach. Sci. Bull. 63, 244–251 (2018). doi: 10.1016/j.scib.2017.12.020
[13] Longhi, S. Time reversal of a discrete system coupled to a continuum based on non-Hermitian flip. Sci. Bull. 62, 869–874 (2017). doi: 10.1016/j.scib.2017.05.012
[14] Bender, C. M., Brody, D. C., Jones, H. F. & Meister, B. K. Faster than Hermitian quantum mechanics. Phys. Rev. Lett. 98, 040403 (2007). doi: 10.1103/PhysRevLett.98.040403
[15] Makris, K. G., Brandstötter, A., Ambichl, P., Musslimani, Z. H. & Rotter, S. Wave propagation through disordered media without backscattering and intensity variations. Light Sci. Appl. 6, e17035 (2017). doi: 10.1038/lsa.2017.35
[16] Feng, L., El-Ganainy, R. & Ge, L. Non-Hermitian photonics based on parity–time symmetry. Nat. Photon. 11, 752–762 (2017). doi: 10.1038/s41566-017-0031-1
[17] Liu, W. L. et al. An integrated parity-time symmetric wavelength-tunable single-mode microring laser. Nat. Commun. 8, 15389 (2017). doi: 10.1038/ncomms15389
[18] Hodaei, H., Miri, M. A., Heinrich, M., Christodoulides, D. N. & Khajavikhan, M. Parity-time–symmetric microring lasers. Science 346, 975–978 (2014). doi: 10.1126/science.1258480
[19] Hodaei, H. et al. Single mode lasing in transversely multi‐moded PT‐symmetric microring resonators. Laser Photon. Rev. 10, 494–499 (2016). doi: 10.1002/lpor.201500292
[20] Hodaei H., et al. Tunable parity-time-symmetric microring lasers. CLEO 2015. paper SF1I.1.
[21] Li, G. & El-Ramy, G. Nonlinear modal interactions in parity-time (PT) symmetric lasers. Sci. Rep. 6, 24889 (2016). doi: 10.1038/srep24889
[22] Liertzer, M. et al. Pump-induced exceptional points in lasers. Phys. Rev. Lett. 108, 173901 (2012). doi: 10.1103/PhysRevLett.108.173901
[23] Brandstetter, M. et al. Reversing the pump dependence of a laser at an exceptional point. Nat. Commun. 5, 4034 (2014). doi: 10.1038/ncomms5034
[24] Chang, L. et al. Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators. Nat. Photon. 8, 524–529 (2014). doi: 10.1038/nphoton.2014.133
[25] Peng, B. et al. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014). doi: 10.1038/nphys2927
[26] Schindler, J., Li, A., Zheng, M. C., Ellis, F. M. & Kottos, T. Experimental study of active LRC circuits with PT symmetries. Phys. Rev. A 84, 040101 (2011). doi: 10.1103/PhysRevA.84.040101
[27] Chong, Y. D., Ge, L., Cao, H. & Stone, A. D. Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010). doi: 10.1103/PhysRevLett.105.053901
[28] Wan, W. J. et al. Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011). doi: 10.1126/science.1200735
[29] Zhang, J. F., Macdonald, K. F. & Zheludev, N. I. Controlling light-with-light without nonlinearity. Light Sci. Appl. 1, e18 (2012). doi: 10.1038/lsa.2012.18
[30] Yao, X. S. & Maleki, L. Multiloop optoelectronic oscillator. IEEE J. Quantum Electron 36, 79–84 (2000).
[31] Longhi, S. PT-symmetric laser absorber. Phys. Rev. Lett. 82, 031801 (2010).
[32] Chong, Y. D., Ge, L. & Stone, A. D. PT symmetry breaking and laser-absorber modes in optical scattering systems. Phys. Rev. Lett. 106, 093902 (2011). doi: 10.1103/PhysRevLett.106.093902
[33] Zhao, G. M. et al. Raman lasing and Fano lineshapes in a packaged fiber-coupled whispering-gallery-mode microresonator. Sci. Bull. 62, 875–878 (2017). doi: 10.1016/j.scib.2017.05.011
[34] Gu, F. X. et al. Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering. Light Sci. Appl. 6, e17061 (2017). doi: 10.1038/lsa.2017.61
[35] Liu, X. F. et al. Gain competition induced mode evolution and resonance control in erbium-doped whispering-gallery microresonators. Opt. Exp. 24, 9550 (2016). doi: 10.1364/OE.24.009550
[36] Lei, F., Peng, B., Özdemir, Ş. K., Long, G. L. & Yang, L. Dynamic fano-like resonances in erbium-doped whispering-gallery-mode microresonators. Appl. Phys. Lett. 105, 101112 (2014). doi: 10.1063/1.4895632
[37] Yao, X. S. & Maleki, L. Optoelectronic microwave oscillator. J. Opt. Soc. Am. B 13, 1725–1735 (1996). doi: 10.1364/JOSAB.13.001725
[38] Chen, W. J., Zhu, D., Chen, Z. W. & Pan, S. L. Full-duty triangular pulse generation based on a polarization-multiplexing dual-drive Mach-Zehnder modulator. Opt. Exp. 24, 28606–28612 (2016). doi: 10.1364/OE.24.028606
[39] Yamazaki, H., Yamada, T., Goh, T. & Kaneko, A. PDM-QPSK modulator with a hybrid configuration of silica PLCs and LiNbO3 phase modulators. J. Light Technol. 29, 721–727 (2011). doi: 10.1109/JLT.2010.2101052
[40] Li, W. Z. & Yao, J. P. A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber bragg grating. IEEE Trans. Microw. Theory Tech. 60, 1735–1742 (2012). doi: 10.1109/TMTT.2012.2189231
[41] Haus, H. A. Waves and Fields in Optoelectronics. (Prentice-Hall, Englewood Cliffs, NJ, 1984).
[42] He, L., Özdemir, Ş. K., Zhu, J. G. & Yang, L. Ultrasensitive detection of mode splitting in active optical microcavities. Phys. Rev. A. 82, 053810 (2010). doi: 10.1103/PhysRevA.82.053810
[43] Zhu, J. G. et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photon. 4, 46–49 (2010). doi: 10.1038/nphoton.2009.237