[1] |
Bender, C. M. & Boettcher, S. Real spectra in non-hermitian hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998). doi: 10.1103/PhysRevLett.80.5243 |
[2] |
Hatano, N. & Nelson, D. R. Localization transitions in non-hermitian quantum mechanics. Phys. Rev. Lett. 77, 570–573 (1996). doi: 10.1103/PhysRevLett.77.570 |
[3] |
Berry, M. V. Optical lattices with PT symmetry are not transparent. J. Phys. A: Math. Theor. 41, 244007 (2008). doi: 10.1088/1751-8113/41/24/244007 |
[4] |
Zheng, C., Hao, L. & Long, G. L. Observation of a fast evolution in a parity-time-symmetric system. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 371, 20120053 (2013). doi: 10.1098/rsta.2012.0053 |
[5] |
El-Ganainy, R., Makris, K. G., Christodoulides, D. N. & Musslimani, Z. H. Theory of coupled optical PT-symmetric structures. Opt. Lett. 32, 2632–2634 (2007). doi: 10.1364/OL.32.002632 |
[6] |
Makris, K. G., El-Ganainy, R., Christodoulides, D. N. & Musslimani, Z. H. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008). doi: 10.1103/PhysRevLett.100.103904 |
[7] |
Musslimani, Z. H., Makris, K. G., El-Ganainy, R. & Christodoulides, D. N. Optical solitons in PT periodic potentials. Phys. Rev. Lett. 100, 030402 (2008). doi: 10.1103/PhysRevLett.100.030402 |
[8] |
Rüter, C. E. et al. Observation of parity–time symmetry in optics. Nat. Phys. 6, 192–195 (2010). doi: 10.1038/nphys1515 |
[9] |
Ruschhaupt, A., Delgado, F. & Muga, J. G. Physical realization of PT-symmetric potential scattering in a planar slab waveguide. J. Phys. A: Math. Gen. 38, L171–L176 (2005). doi: 10.1088/0305-4470/38/9/L03 |
[10] |
Klaiman, S., Günther, U. & Moiseyev, N. Visualization of branch points in PT-symmetric waveguides. Phys. Rev. Lett. 101, 080402 (2008). doi: 10.1103/PhysRevLett.101.080402 |
[11] |
Longhi, S. Quantum-optical analogies using photonic structures. Laser Photon Rev. 3, 243–261 (2009). doi: 10.1002/lpor.200810055 |
[12] |
Rodríguez-Lara, B. M., El-Ganainy, R. & Guerrero, J. Symmetry in optics and photonics: a group theory approach. Sci. Bull. 63, 244–251 (2018). doi: 10.1016/j.scib.2017.12.020 |
[13] |
Longhi, S. Time reversal of a discrete system coupled to a continuum based on non-Hermitian flip. Sci. Bull. 62, 869–874 (2017). doi: 10.1016/j.scib.2017.05.012 |
[14] |
Bender, C. M., Brody, D. C., Jones, H. F. & Meister, B. K. Faster than Hermitian quantum mechanics. Phys. Rev. Lett. 98, 040403 (2007). doi: 10.1103/PhysRevLett.98.040403 |
[15] |
Makris, K. G., Brandstötter, A., Ambichl, P., Musslimani, Z. H. & Rotter, S. Wave propagation through disordered media without backscattering and intensity variations. Light Sci. Appl. 6, e17035 (2017). doi: 10.1038/lsa.2017.35 |
[16] |
Feng, L., El-Ganainy, R. & Ge, L. Non-Hermitian photonics based on parity–time symmetry. Nat. Photon. 11, 752–762 (2017). doi: 10.1038/s41566-017-0031-1 |
[17] |
Liu, W. L. et al. An integrated parity-time symmetric wavelength-tunable single-mode microring laser. Nat. Commun. 8, 15389 (2017). doi: 10.1038/ncomms15389 |
[18] |
Hodaei, H., Miri, M. A., Heinrich, M., Christodoulides, D. N. & Khajavikhan, M. Parity-time–symmetric microring lasers. Science 346, 975–978 (2014). doi: 10.1126/science.1258480 |
[19] |
Hodaei, H. et al. Single mode lasing in transversely multi‐moded PT‐symmetric microring resonators. Laser Photon. Rev. 10, 494–499 (2016). doi: 10.1002/lpor.201500292 |
[20] |
Hodaei H., et al. Tunable parity-time-symmetric microring lasers. CLEO 2015. paper SF1I.1. |
[21] |
Li, G. & El-Ramy, G. Nonlinear modal interactions in parity-time (PT) symmetric lasers. Sci. Rep. 6, 24889 (2016). doi: 10.1038/srep24889 |
[22] |
Liertzer, M. et al. Pump-induced exceptional points in lasers. Phys. Rev. Lett. 108, 173901 (2012). doi: 10.1103/PhysRevLett.108.173901 |
[23] |
Brandstetter, M. et al. Reversing the pump dependence of a laser at an exceptional point. Nat. Commun. 5, 4034 (2014). doi: 10.1038/ncomms5034 |
[24] |
Chang, L. et al. Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators. Nat. Photon. 8, 524–529 (2014). doi: 10.1038/nphoton.2014.133 |
[25] |
Peng, B. et al. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014). doi: 10.1038/nphys2927 |
[26] |
Schindler, J., Li, A., Zheng, M. C., Ellis, F. M. & Kottos, T. Experimental study of active LRC circuits with PT symmetries. Phys. Rev. A 84, 040101 (2011). doi: 10.1103/PhysRevA.84.040101 |
[27] |
Chong, Y. D., Ge, L., Cao, H. & Stone, A. D. Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010). doi: 10.1103/PhysRevLett.105.053901 |
[28] |
Wan, W. J. et al. Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011). doi: 10.1126/science.1200735 |
[29] |
Zhang, J. F., Macdonald, K. F. & Zheludev, N. I. Controlling light-with-light without nonlinearity. Light Sci. Appl. 1, e18 (2012). doi: 10.1038/lsa.2012.18 |
[30] |
Yao, X. S. & Maleki, L. Multiloop optoelectronic oscillator. IEEE J. Quantum Electron 36, 79–84 (2000). |
[31] |
Longhi, S. PT-symmetric laser absorber. Phys. Rev. Lett. 82, 031801 (2010). |
[32] |
Chong, Y. D., Ge, L. & Stone, A. D. PT symmetry breaking and laser-absorber modes in optical scattering systems. Phys. Rev. Lett. 106, 093902 (2011). doi: 10.1103/PhysRevLett.106.093902 |
[33] |
Zhao, G. M. et al. Raman lasing and Fano lineshapes in a packaged fiber-coupled whispering-gallery-mode microresonator. Sci. Bull. 62, 875–878 (2017). doi: 10.1016/j.scib.2017.05.011 |
[34] |
Gu, F. X. et al. Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering. Light Sci. Appl. 6, e17061 (2017). doi: 10.1038/lsa.2017.61 |
[35] |
Liu, X. F. et al. Gain competition induced mode evolution and resonance control in erbium-doped whispering-gallery microresonators. Opt. Exp. 24, 9550 (2016). doi: 10.1364/OE.24.009550 |
[36] |
Lei, F., Peng, B., Özdemir, Ş. K., Long, G. L. & Yang, L. Dynamic fano-like resonances in erbium-doped whispering-gallery-mode microresonators. Appl. Phys. Lett. 105, 101112 (2014). doi: 10.1063/1.4895632 |
[37] |
Yao, X. S. & Maleki, L. Optoelectronic microwave oscillator. J. Opt. Soc. Am. B 13, 1725–1735 (1996). doi: 10.1364/JOSAB.13.001725 |
[38] |
Chen, W. J., Zhu, D., Chen, Z. W. & Pan, S. L. Full-duty triangular pulse generation based on a polarization-multiplexing dual-drive Mach-Zehnder modulator. Opt. Exp. 24, 28606–28612 (2016). doi: 10.1364/OE.24.028606 |
[39] |
Yamazaki, H., Yamada, T., Goh, T. & Kaneko, A. PDM-QPSK modulator with a hybrid configuration of silica PLCs and LiNbO3 phase modulators. J. Light Technol. 29, 721–727 (2011). doi: 10.1109/JLT.2010.2101052 |
[40] |
Li, W. Z. & Yao, J. P. A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber bragg grating. IEEE Trans. Microw. Theory Tech. 60, 1735–1742 (2012). doi: 10.1109/TMTT.2012.2189231 |
[41] |
Haus, H. A. Waves and Fields in Optoelectronics. (Prentice-Hall, Englewood Cliffs, NJ, 1984). |
[42] |
He, L., Özdemir, Ş. K., Zhu, J. G. & Yang, L. Ultrasensitive detection of mode splitting in active optical microcavities. Phys. Rev. A. 82, 053810 (2010). doi: 10.1103/PhysRevA.82.053810 |
[43] |
Zhu, J. G. et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photon. 4, 46–49 (2010). doi: 10.1038/nphoton.2009.237 |