[1] Attwood, D. & Sakdinawat, A. X-Rays and Extreme Ultraviolet Radiation: Principles and Applications. 2nd edn (Cambridge: Cambridge University Press, 2016).
[2] Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. 7th edn (Cambridge: Cambridge University Press, 1999).
[3] Salditt, T. & Osterhoff, M. X-ray focusing and optics. in Nanoscale Photonic Imaging (eds Salditt, T., Egner, A. & Luke, D. R. ) 71–124 (Cham: Springer, 2020).
[4] Mimura, H. et al. Breaking the 10 nm barrier in hard-X-ray focusing. Nat. Phys. 6, 122–125 (2010). doi: 10.1038/nphys1457
[5] Yumoto, H. et al. Focusing of X-ray free-electron laser pulses with reflective optics. Nat. Photonics 7, 43–47 (2013). doi: 10.1038/nphoton.2012.306
[6] Yamauchi, K. et al. Figuring with subnanometer-level accuracy by numerically controlled elastic emission machining. Rev. Sci. Instrum. 73, 4028–4033 (2002). doi: 10.1063/1.1510573
[7] Thiess, H., Lasser, H. & Siewert, F. Fabrication of X-ray mirrors for synchrotron applications. Nucl. Instrum. Methods Phys. Res. Sect. A. 616, 157–161 (2010). doi: 10.1016/j.nima.2009.10.077
[8] Yamauchi, K. et al. Microstitching interferometry for x-ray reflective optics. Rev. Sci. Instrum. 74, 2894–2898 (2003). doi: 10.1063/1.1569405
[9] Idir, M. et al. A 2 D high accuracy slope measuring system based on a Stitching Shack Hartmann Optical Head. Opt. Express 22, 2770–2781 (2014). doi: 10.1364/OE.22.002770
[10] Huang, L. et al. One-dimensional angular-measurement-based stitching interferometry. Opt. Express 26, 9882–9892 (2018). doi: 10.1364/OE.26.009882
[11] Siewert, F. et al. The Nanometer optical component measuring machine: a new Sub‐nm topography measuring device for X‐ray optics at BESSY. AIP Conf. Proc. 705, 847 (2004). doi: 10.1063/1.1757928
[12] Alcock, S. G. et al. The Diamond-NOM: a non-contact profiler capable of characterizing optical figure error with sub-nanometre repeatability. Nucl. Instrum. Methods Phys. Res. Sect. A. 616, 224–228 (2010). doi: 10.1016/j.nima.2009.10.137
[13] Assoufid, L. et al. Development of a high-performance gantry system for a new generation of optical slope measuring profilers. Nucl. Instrum. Methods Phys. Res. Sect. A. 710, 31–36 (2013). doi: 10.1016/j.nima.2012.11.063
[14] Nicolas, J. & Martínez, J. C. Characterization of the error budget of Alba-NOM. Nucl. Instrum. Methods Phys. Res. Sect. A. 710, 24–30 (2013). doi: 10.1016/j.nima.2012.10.125
[15] Takacs, P. Z., Qian, S. N. & Colbert, J. Design of a long trace surface profiler. In Proc SPIE 0749, Metrology: Figure and Finish (Los Angeles, CA, United States: SPIE, 1987).
[16] Qian, S. N. & Idir, M. Innovative nano-accuracy surface profiler for sub-50 nrad rms mirror test. In Proc SPIE 9687, 8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Subnanometer Accuracy Measurement for Synchrotron Optics and X-Ray Optics (Suzhou, China: SPIE, 2016).
[17] Yashchuk, V. V. et al. Sub-microradian surface slope metrology with the ALS Developmental Long Trace Profiler. Nucl. Instrum. Methods Phys. Res. Sect. A. 616, 212–223 (2010). doi: 10.1016/j.nima.2009.10.175
[18] Siewert, F. et al. Global high-accuracy intercomparison of slope measuring instruments. AIP Conf. Proc. 879, 706–709 (2007). doi: 10.1063/1.2436160
[19] Siewert, F. et al. Ultra-precise characterization of LCLS hard X-ray focusing mirrors by high resolution slope measuring deflectometry. Opt. Express 20, 4525–4536 (2012). doi: 10.1364/OE.20.004525
[20] Alcock, S. G., Nistea, I. & Sawhney, K. Nano-metrology: the art of measuring X-ray mirrors with slope errors < 100 nrad. Rev. Sci. Instrum. 87, 051902 (2016). doi: 10.1063/1.4949272
[21] Qian, S. N. et al. Approaching sub-50 nanoradian measurements by reducing the saw-tooth deviation of the autocollimator in the Nano-Optic-Measuring Machine. Nucl. Instrum. Methods Phys. Res. Sect. A. 785, 206–212 (2015). doi: 10.1016/j.nima.2015.02.065
[22] Goodman, J. W. Speckle Phenomena in Optics: Theory and Applications. (Englewood: Roberts & Company Publishers, 2006).
[23] Berujon, S., Wang, H. C. & Sawhney, K. X-ray multimodal imaging using a random-phase object. Phys. Rev. A 86, 063813 (2012). doi: 10.1103/PhysRevA.86.063813
[24] Bérujon, S. et al. Two-dimensional X-ray beam phase sensing. Phys. Rev. Lett. 108, 158102 (2012). doi: 10.1103/PhysRevLett.108.158102
[25] Berujon, S. et al. At-wavelength metrology of hard X-ray mirror using near field speckle. Opt. Express 22, 6438–6446 (2014). doi: 10.1364/OE.22.006438
[26] Morgan, K. S. et al. X-ray phase imaging with a paper analyzer. Appl. Phys. Lett. 100, 124102 (2012). doi: 10.1063/1.3694918
[27] Wang, H. C. & Sawhney, K. Hard X-ray omnidirectional differential phase and dark-field imaging. Proc. Natl Acad. Sci. USA 118, e2022319118 (2021). doi: 10.1073/pnas.2022319118
[28] Zdora, M. C. et al. X-ray phase-contrast imaging and metrology through unified modulated pattern analysis. Phys. Rev. Lett. 118, 203903 (2017). doi: 10.1103/PhysRevLett.118.203903
[29] Wang, H. C. et al. X-ray phase contrast tomography by tracking near field speckle. Sci. Rep. 5, 8762 (2015). doi: 10.1038/srep08762
[30] Wang, H. C., Kashyap, Y. & Sawhney, K. Speckle based X-ray wavefront sensing with nanoradian angular sensitivity. Opt. Express 23, 23310–23317 (2015). doi: 10.1364/OE.23.023310
[31] Wang, H. C., Sutter, J. & Sawhney, K. Advanced in situ metrology for x-ray beam shaping with super precision. Opt. Express 23, 1605–1614 (2015). doi: 10.1364/OE.23.001605
[32] Sawhney, K. et al. At-wavelength metrology of X-ray optics at diamond light source. Synchrotron Radiat. N. 26, 17–22 (2013). doi: 10.1080/08940886.2013.832586
[33] Pan, B., Lu, Z. X. & Xie, H. M. Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation. Opt. Lasers Eng. 48, 469–477 (2010). doi: 10.1016/j.optlaseng.2009.08.010
[34] Kaso, A. Computation of the normalized cross-correlation by fast Fourier transform. PLoS One 13, e0203434 (2018). doi: 10.1371/journal.pone.0203434
[35] Pan, B. et al. Performance of sub-pixel registration algorithms in digital image correlation. Meas. Sci. Technol. 17, 1615–1621 (2006). doi: 10.1088/0957-0233/17/6/045
[36] Goodman, J. W. Introduction to Fourier Optics 3rd edn, (Englewood: Roberts & Company Publishers, 2005).
[37] Pan, B., Li, K. & Tong, W. Fast, robust and accurate digital image correlation calculation without redundant computations. Exp. Mech. 53, 1277–1289 (2013). doi: 10.1007/s11340-013-9717-6
[38] Wang, Z. Q. et al. Deformation monitoring system based on 2D-DIC for cultural relics protection in museum environment with low and varying illumination. Math. Probl. Eng. 2018, 5240219 (2018).
[39] Su, Y. et al. Theoretical analysis on performance of digital speckle pattern: uniqueness, accuracy, precision, and spatial resolution. Opt. Express 27, 22439–22474 (2019). doi: 10.1364/OE.27.022439
[40] Liu, S. et al. sCMOS noise-correction algorithm for microscopy images. Nat. Methods 14, 760–761 (2017). doi: 10.1038/nmeth.4379
[41] Mandracchia, B. et al. Fast and accurate sCMOS noise correction for fluorescence microscopy. Nat. Commun. 11, 94 (2020). doi: 10.1038/s41467-019-13841-8
[42] Qian, S. N. & Takacs, P. in Modern Metrology Concerns (ed Cocco, L. ) 77–114 (Rijeka: IntechOpen, 2012).
[43] Laundy, D. et al. Surface profiling of X-ray mirrors for shaping focused beams. Opt. Express 23, 1576–1584 (2015). doi: 10.1364/OE.23.001576
[44] Laundy, D. et al. Development of a multi-lane X-ray mirror providing variable beam sizes. Rev. Sci. Instrum. 87, 051802 (2016). doi: 10.1063/1.4950732
[45] Huang, L. et al. Two-dimensional stitching interferometry for self-calibration of high-order additive systematic errors. Opt. Express 27, 26940–26956 (2019). doi: 10.1364/OE.27.026940
[46] Polack, F. et al. Surface shape determination with a stitching Michelson interferometer and accuracy evaluation. Rev. Sci. Instrum. 90, 021708 (2019). doi: 10.1063/1.5061930
[47] Nicolas, J. et al. Completeness condition for unambiguous profile reconstruction by sub-aperture stitching. Opt. Express 26, 27212–27220 (2018). doi: 10.1364/OE.26.027212
[48] Yashchuk, V. V. et al. Investigation on lateral resolution of surface slope profilers. In Proc. SPIE 11109, Advances in Metrology for X-Ray and EUV Optics VIII (San Diego, California, United States: SPIE, 2019).
[49] Hu, L. F. et al. Investigation of the stripe patterns from X-ray reflection optics. Opt. Express 29, 4270–4286 (2021). doi: 10.1364/OE.417030
[50] Yashchuk, V. V., Samoylova, L. V. & Kozhevnikov, I. V. Specification of x-ray mirrors in terms of system performance: new twist to an old plot. Optical Eng. 54, 025108 (2015). doi: 10.1117/1.OE.54.2.025108
[51] Wang, H. C. et al. High-energy, high-resolution, fly-scan X-ray phase tomography. Sci. Rep. 9, 8913 (2019). doi: 10.1038/s41598-019-45561-w
[52] Alcock, S. G. et al. A novel instrument for generating angular increments of 1 nanoradian. Rev. Sci. Instrum. 86, 125108 (2015). doi: 10.1063/1.4937352