[1] Cheng, J. B. et al. Recent advances in optoelectronic devices based on 2D materials and their heterostructures. Adv. Funct. Mater. 7, 1800441 (2019).
[2] Tyagi, D. et al. Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. Nanoscale 12, 3535–3559 (2020). doi: 10.1039/C9NR10178K
[3] Nan, J. X. et al. Nanoengineering of 2D MXene-based materials for energy storage applications. Small 17, 1902085 (2021). doi: 10.1002/smll.201902085
[4] Anasori, B. & Gogotsi, Y. 2D Metal Carbides and Nitrides (MXenes) Structure, Properties and Applications (Springer, 2019).
[5] Alhabeb, M. et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2TX MXene). Chem. Mater. 29, 7633–7644 (2017). doi: 10.1021/acs.chemmater.7b02847
[6] Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). doi: 10.1038/natrevmats.2016.98
[7] Orangi, J. et al. 3D printing of additive-free 2D Ti3C2TX (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities. ACS Nano 14, 640–650 (2020). doi: 10.1021/acsnano.9b07325
[8] Zhang, C. F. et al. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29, 1702678 (2017). doi: 10.1002/adma.201702678
[9] Hantanasirisakul, K. et al. Fabrication of Ti3C2TX MXene transparent thin films with tunable optoelectronic properties. Adv. Eng. Mater. 2, 1600050 (2016).
[10] Wu, Q. et al. MZI-based all-optical modulator using MXene Ti3C2TX (T=F, O, or OH) deposited microfiber. Adv. Mater. Technol. 4, 1800532 (2019). doi: 10.1002/admt.201800532
[11] Song, Y. F. et al. Nonlinear few-layer MXene-assisted all-optical wavelength conversion at telecommunication band. Adv. Optical Mater. 7, 1801777 (2019). doi: 10.1002/adom.201801777
[12] Zhang, Y. et al. Simultaneous voltammetric determination of acetaminophen and isoniazid using MXene modified screen-printed electrode. Biosens. Bioelectron. 130, 315–321 (2019). doi: 10.1016/j.bios.2019.01.043
[13] Khazaei, M. et al. Electronic properties and applications of MXenes: a theoretical review. J. Mater. Chem. C. 5, 2488–2503 (2017). doi: 10.1039/C7TC00140A
[14] Sarycheva, A. et al. Two-dimensional titanium carbide (MXene) as surface-enhanced Raman scattering substrate. J. Phys. Chem. C. 121, 19983–19988 (2017). doi: 10.1021/acs.jpcc.7b08180
[15] Dillon, A. D. et al. Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv. Funct. Mater. 26, 4162–4168 (2016). doi: 10.1002/adfm.201600357
[16] Moynihan, E. et al. Plasmons in MoS2 studied via experimental and theoretical correlation of energy loss spectra. J. Microsc. 279, 256–264 (2020). doi: 10.1111/jmi.12900
[17] De Abajo, F. J. G. Graphene plasmonics: challenges and opportunities. ACS Photonics 1, 135–152 (2014). doi: 10.1021/ph400147y
[18] Mears, R. J. et al. Low-noise erbium-doped fibre amplifier operating at 1.54 μm. Electron. Lett. 23, 1026–1028 (1987).
[19] Meltz, G., Morey, W. W. & Glenn, W. H. Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett. 14, 823–825 (1989). doi: 10.1364/OL.14.000823
[20] Slavı́k, R., Homola, J. & Čtyroký, J. Single-mode optical fiber surface plasmon resonance sensor. Sens. Actuators B: Chem. 54, 74–79 (1999). doi: 10.1016/S0925-4005(98)00314-1
[21] Kim, S. J. et al. Metallic Ti3C2TX MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12, 986–993 (2018). doi: 10.1021/acsnano.7b07460
[22] Ho, D. H. et al. Sensing with MXenes: progress and prospects. Adv. Mater. 33, 2005846 (2021). doi: 10.1002/adma.202005846
[23] Maier, S. A. Plasmonics: Fundamentals and Applications. (Springer, 2007).
[24] Pacheco-Peña, V. Metamaterials and plasmonics applied to devices based on periodic structures at high frequencies: microwaves, terahertz and optical range. PhD thesis, (Universidad Pública de Navarra, Pamplona, 2016).
[25] Pacheco-Peña, V. et al. Comprehensive analysis of photonic nanojets in 3D dielectric cuboids excited by surface plasmons. Ann. der Phys. 528, 684–692 (2016). doi: 10.1002/andp.201600098
[26] Dong, L. M. et al. Two-dimensional metal carbides and nitrides (MXenes): preparation, property, and applications in cancer therapy. Nanophotonics 9, 2125–2145 (2020). doi: 10.1515/nanoph-2019-0550
[27] Pacheco-Peña, V. & Beruete, M. Steering surface plasmons with a graded index dielectric medium. J. Phys. D: Appl. Phys. 51, 485101 (2018). doi: 10.1088/1361-6463/aae3a5
[28] Rodríguez-Fortuño, F. J. et al. Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science 340, 328–330 (2013). doi: 10.1126/science.1233739
[29] Vakil, A. & Engheta, N. Transformation optics using graphene. Science 332, 1291–1294 (2011). doi: 10.1126/science.1202691
[30] Yin, L. L. et al. Subwavelength focusing and guiding of surface plasmons. Nano Lett. 5, 1399–1402 (2005). doi: 10.1021/nl050723m
[31] Knight, M. W. et al. Aluminum for plasmonics. ACS Nano 8, 834–840 (2014). doi: 10.1021/nn405495q
[32] Makarenko, K. S. et al. Efficient surface plasmon polariton excitation and control over outcoupling mechanisms in metal–insulator–metal tunneling junctions. Adv. Sci. 7, 1900291 (2020). doi: 10.1002/advs.201900291
[33] Petukhov, D. I. et al. Spontaneous MXene monolayer assembly at the liquid–air interface. Nanoscale 11, 9980–9986 (2019). doi: 10.1039/C9NR00525K
[34] Mojtabavi, M. et al. Wafer-scale lateral self-assembly of mosaic Ti3C2TX MXene monolayer films. ACS Nano 15, 625–636 (2021). doi: 10.1021/acsnano.0c06393