[1] Fleischmann, M., Hendra, P. J. & McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters 26, 163-166 (1974). doi: 10.1016/0009-2614(74)85388-1
[2] Jeanmaire, D. L. et al. Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 84, 1-20 (1977). doi: 10.1016/S0022-0728(77)80224-6
[3] Haynes, C. L. et al. Surface-enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection. Journal of Raman Spectroscopy 36, 471-484 (2005). doi: 10.1002/jrs.1376
[4] Albrecht, M. G. & Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the American Chemical Society 99, 5215-5217 (1977). doi: 10.1021/ja00457a071
[5] Otto, A. The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering. Journal of Raman Spectroscopy 36, 497-509 (2005). doi: 10.1002/jrs.1355
[6] Kneipp, K. et al. Surface-enhanced Raman scattering (SERS)-a new tool for single molecule detection and identification. Bioimaging 6, 104-110 (1998). doi: 10.1002/1361-6374(199806)6:2<104::AID-BIO6>3.0.CO;2-T
[7] Etchegoin, R. et al. Electromagnetic contribution to surface enhanced Raman scattering revisited. The Journal of Chemical Physics 119, 5281-5289 (2003). doi: 10.1063/1.1597480
[8] Halas, N. J. et al. Plasmons in strongly coupled metallic nanostructures. Chemical Reviews 111, 3913-3961 (2011). doi: 10.1021/cr200061k
[9] Park, S. G. et al. Surface energy-controlled SERS substrates for molecular concentration at plasmonic nanogaps. Advanced Functional Materials 27, 1703376 (2017). doi: 10.1002/adfm.201703376
[10] Chen, B. et al. Green synthesis of large-scale highly ordered core@shell nanoporous Au@Ag nanorod arrays as sensitive and reproducible 3D SERS substrates. ACS Applied Materials & Interfaces 6, 15667-15675 (2014). doi: 10.1021/am505474n
[11] Yang, Y. Q. et al. Simultaneous synthesis and assembly of silver nanoparticles to three-demensional superstructures for sensitive surface-enhanced Raman spectroscopy detection. ACS Applied Materials & Interfaces 6, 21468-21473 (2014). doi: 10.1021/am506464f
[12] Liu, D. H. et al. Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition. Nature Communications 9, 193 (2018). doi: 10.1038/s41467-017-02627-5
[13] Zheng, Z. H. et al. Semiconductor SERS enhancement enabled by oxygen incorporation. Nature Communications 8, 1993 (2017). doi: 10.1038/s41467-017-02166-z
[14] Tan, E. Z. et al. Three dimensional design of large-scale TiO2 nanorods scaffold decorated by silver nanoparticles as SERS sensor for ultrasensitive malachite green detection. ACS Applied Materials & Interfaces 4, 3432-3437 (2012).
[15] Huang, J. A. et al. Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection. Nano Letters 13, 5039-5045 (2013). doi: 10.1021/nl401920u
[16] Lei, S. J. et al. Visible light-induced charge transfer to improve sensitive surface-enhanced Raman scattering of ZnO/Ag nanorod arrays. Applied Surface Science 452, 148-154 (2018). doi: 10.1016/j.apsusc.2018.05.005
[17] Park, H. Y. et al. Carboxylic acid-functionalized, graphitic layer-coated three-dimensional SERS substrate for label-free analysis of Alzheimer’s disease biomarkers. Nano Letters 20, 2576-2584 (2020). doi: 10.1021/acs.nanolett.0c00048
[18] Liu, Y. et al. Sensitive and direct DNA mutation detection by surface-enhanced Raman spectroscopy using rational designed and tunable plasmonic nanostructures. Analytical Chemistry 92, 5708-5716 (2020). doi: 10.1021/acs.analchem.9b04183
[19] Fang, X. G. et al. Hierarchically ordered silicon metastructures from improved self-assembly-based nanosphere lithography. ACS Applied Materials & Interfaces 12, 12345-12352 (2020). doi: 10.1021/acsami.9b2293
[20] Kim, S. et al. Label-free surface-enhanced Raman spectroscopy biosensor for on-site breast cancer detection using human tears. ACS Applied Materials & Interfaces 12, 7897-7904 (2020). doi: 10.1021/acsami.9b19421
[21] Gao, X. et al. A multifunctional plasmonic chip for bacteria capture, imaging, detection, and in situ elimination for wound therapy. Nanoscale 12, 6489-6497 (2020). doi: 10.1039/d0nr00638f
[22] Zhang, H. D. et al. CoFe2O4@HNTs/AuNPs substrate for rapid magnetic solid-phase extraction and efficient SERS detection of complex samples all-in-one. Analytical Chemistry 92, 4607-4613 (2020). doi: 10.1021/acs.analchem.0c00144
[23] Sheng, W. B. et al. Polymer brushes on graphitic carbon nitride for patterning and as a SERS active sensing layer via incorporated nanoparticles. ACS Applied Materials & Interfaces 12, 9797-9805 (2020).
[24] Shi, Y. L. et al. Hierarchical growth of Au nanograss with intense built-in hotspots for plasmonic applications. Journal of Materials Chemistry C 8, 16073-16082 (2020). doi: 10.1039/D0TC04294C
[25] Lao, Z. X. et al. Nanogap plasmonic structures fabricated by switchable capillary-force driven self-assembly for localized sensing of anticancer medicines with microfluidic SERS. Advanced Functional Materials 30, 1909467 (2020). doi: 10.1002/adfm.201909467
[26] Diebold, E. D. et al. Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering. Langmuir 25, 1790-1794 (2009). doi: 10.1021/la803357q
[27] Wang, Q. et al. Large-scale diamond silver nanoparticle arrays as uniform and sensitive SERS substrates fabricated by surface plasmon lithography technology. Optics Communications 444, 56-62 (2019). doi: 10.1016/j.optcom.2019.03.071
[28] Zhou, W. P. et al. Anisotropic optical properties of large-scale aligned silver nanowire films via controlled coffee ring effects. RSC Advances 5, 39103-39109 (2015). doi: 10.1039/C5RA04214C
[29] Wu, J. et al. Reusable and long-life 3D Ag nanoparticles coated Si nanowire array as sensitive SERS substrate. Applied Surface Science 494, 583-590 (2019). doi: 10.1016/j.apsusc.2019.07.080
[30] Stoddart, P. R. et al. Optical properties of chitin: surface-enhanced Raman scattering substrates based on antireflection structures on cicada wings. Nanotechnology 17, 680-686 (2006). doi: 10.1088/0957-4484/17/3/011
[31] Wang, P. et al. Label-free SERS selective detection of dopamine and serotonin using graphene-Au nanopyramid heterostructure. Analytical Chemistry 87, 10255-10261 (2015). doi: 10.1021/acs.analchem.5b01560
[32] Izquierdo-Lorenzo, I., Jradi, S. & Adam, P. M. Direct laser writing of random Au nanoparticle three-dimensional structures for highly reproducible micro-SERS measurements. RSC. Advances 4, 4128-4133 (2014). doi: 10.1039/C3RA46220J
[33] Huang, J. et al. 3D silver nanoparticles decorated zinc oxide/silicon heterostructured nanomace arrays as high-performance surface-enhanced Raman scattering substrates. ACS Applied Materials & Interfaces 7, 5725-5735 (2015).
[34] Park, S. H. et al. Galvanic synthesis of three-dimensional and hollow metallic nanostructures. Nanoscale Research Letters 9, 679 (2014). doi: 10.1186/1556-276X-9-679
[35] Zwahr, C. et al. Ultrashort pulsed laser surface patterning of titanium to improve osseointegration of dental implants. Advanced Engineering Materials 21, 1900639 (2019). doi: 10.1002/adem.201900639
[36] Li, X. X. et al. Temperature-induced stacking to create Cu2O concave sphere for light trapping capable of ultrasensitive single-particle surface-enhanced Raman scattering. Advanced Functional Materials 28, 1801868 (2018). doi: 10.1002/adfm.201801868
[37] Tiwari, V. S. et al. Non-resonance SERS effects of silver colloids with different shapes. Chemical Physics Letters 446, 77-82 (2007). doi: 10.1016/j.cplett.2007.07.106
[38] Zhang, C. H. et al. Small and sharp triangular silver nanoplates synthesized utilizing tiny triangular nuclei and their excellent SERS activity for selective detection of thiram residue in soil. ACS Applied Materials & Interfaces 9, 17387-17398 (2017).
[39] Lin, S. et al. Highly monodisperse Au@Ag nanospheres: synthesis by controlled etching route and size-dependent SERS performance of their surperlattices. Nanotechnology 30, 215601 (2019). doi: 10.1088/1361-6528/ab055b
[40] Fu, Q. Q. et al. Rough surface Au@Ag core-shell nanoparticles to fabricating high sensitivity SERS immunochromatographic sensors. Journal of Nanobiotechnology 13, 81 (2015). doi: 10.1186/s12951-015-0142-0
[41] Yang, Y. et al. The role of etching in the formation of Ag nanoplates with straight, curved and wavy edges and comparison of their SERS properties. Small 10, 1430-1437 (2014). doi: 10.1002/smll.201302877
[42] Bai, S. et al. Reusable surface-enhanced Raman spectroscopy substrates made of silicon nanowire array coated with silver nanoparticles fabricated by metal-assisted chemical etching and photonic reduction. Nanomaterials. 9, 1531 (2019). doi: 10.3390/nano9111531
[43] Dasary, S. S. R. et al. Alizarin dye based ultrasensitive plasmonic SERS probe for trace level cadmium detection in drinking water. Sensors and Actuators B: Chemical 224, 65-72 (2016). doi: 10.1016/j.snb.2015.10.003
[44] Bai, S. et al. Two-step photonic reduction of controlled periodic silver nanostructures for surface-enhanced Raman spectroscopy. Plasmonics 10, 1675-1685 (2015). doi: 10.1007/s11468-015-9979-1
[45] Huang, J. et al. Qualitative and quantitative determination of coumarin using surface-enhanced Raman spectroscopy coupled with intelligent multivariate analysis. RSC Advances 7, 49097-49101 (2017). doi: 10.1039/C7RA09059E
[46] Rickard, J. J. S. et al. Rapid optofluidic detection of biomarkers for traumatic brain injury via surface-enhanced Raman spectroscopy. Nature Biomedical Engineering 4, 610-623 (2020). doi: 10.1038/s41551-019-0510-4
[47] Li, L. et al. Conformational sensitivity of surface selection rules for quantitative Raman identification of small molecules in biofluids. Nanoscale. 10, 14342-14351 (2018). doi: 10.1039/c8nr04710c
[48] Wei, J. et al. In situ Raman monitoring and manipulating of interfacial hydrogen spillover by precise fabrication of Au/TiO2/Pt sandwich structures. Angewandte Chemie International Edition 59, 10343-10347 (2020). doi: 10.1002/anie.202000426
[49] Navratil, M., Mabbott, G. A. & Arriaga, E. A. Chemical microscopy applied to biological systems. Analytical Chemistry 78, 4005-4020 (2006). doi: 10.1021/ac0606756
[50] Xie, Y. L. et al. In situ fabrication of 3D Ag@ZnO nanostructures for microfluidic surface-enhanced Raman scattering systems. ACS Nano 8, 12175-12184 (2014). doi: 10.1021/nn503826r
[51] Moeinian, A. et al. Highly localized SERS measurements using single silicon nanowires decorated with DNA origami-based SERS probe. Nano Letters 19, 1061-1066 (2019). doi: 10.1021/acs.nanolett.8b04355
[52] Thacker, V. V.et al. DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Nature Communications 5, 3448 (2014). doi: 10.1038/ncomms4448
[53] Romero, L. et al. Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Optics Express 14, 9988-9999 (2006). doi: 10.1364/OE.14.009988
[54] Yang, G. et al. Self-assembly of large gold nanoparticles for surface-enhanced Raman spectroscopy. ACS Applied Materials & Interfaces 9, 13457-13470 (2017).
[55] Mao, P. et al. Broadband single molecule SERS detection designed by warped optical spaces. Nature Communications 9, 5428 (2018). doi: 10.1038/s41467-018-07869-5
[56] Zhang, Y. W. et al. Electrochemically synthesized porous Ag double layers for surface-enhanced Raman spectroscopy applications. Langmuir 35, 6340-6345 (2019). doi: 10.1021/acs.langmuir.9b00567
[57] Ionin, A. A. et al. Local field enhancement on metallic periodic surface structures produced by femtosecond laser pulses. Quantum Electronics 43, 304-307 (2013). doi: 10.1070/qe2013v043n04abeh015105
[58] Schneidewind, H. et al. The effect of silver thickness on the enhancement of polymer based SERS substrates. Nanotechnology 25, 445203 (2014). doi: 10.1088/0957-4484/25/44/445203
[59] Bai, S. et al. 3D microfluidic surface-enhanced Raman spectroscopy (SERS) chips fabricated by all-femtosecond-laser-processing for real-time sensing of toxic substances. Advanced Functional Materials 28, 1706262 (2018). doi: 10.1002/adfm.201706262
[60] Kang, Y. et al. A needle-like reusable surface-enhanced Raman scattering substrate, and its application to the determination of acetamiprid by combining SERS and thin-layer chromatography. Microchimica Acta 185, 504 (2018). doi: 10.1007/s00604-018-3034-9
[61] Sun, Y. Y. et al. Parameter optimization for Ag-coated TiO2 nanotube arrays as recyclable SERS substrates. Applied Surface Science 443, 613-618 (2018). doi: 10.1016/j.apsusc.2018.02.202
[62] Cong, S. et al. Electrochromic semiconductors as colorimetric SERS substrates with high reproducibility and renewability. Nature Communications 10, 678 (2019). doi: 10.1038/s41467-019-08656-6
[63] Ma, Z. et al. Femtosecond laser direct writing of plasmonic Ag/Pd alloy nanostructures enables flexible integration of robust SERS substrate. Advanced Materials Technologies 2, 1600270 (2017). doi: 10.1002/admt.201600270
[64] Sharma, B. et al. SERS: materials, applications, and the future. Materials Today 15, 16-25 (2012). doi: 10.1016/S1369-7021(12)70017-2
[65] Matricardi, C. et al. Gold nanoparticle plasmonic superlattices as surface-enhanced Raman spectroscopy substrates. ACS Nano 12, 8531-8539 (2018). doi: 10.1021/acsnano.8b04073
[66] Kennedy, B. J. et al. Determination of the distance dependence and experimental effects for modified SERS substrates based on self-assembled monolayers formed using alkanethiols. The Journal of Physical Chemistry B 103, 3640-3646 (1999). doi: 10.1021/jp984454i
[67] Marinica, D. C. et al. Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. Nano Letters 12, 1333-1339 (2012). doi: 10.1021/nl300269c
[68] Sugioka, K. & Cheng, Y. Femtosecond laser three-dimensional micro- and nanofabrication. Applied Physics Reviews 1, 041303 (2014). doi: 10.1063/1.4904320
[69] Xu, K. C. et al. Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics. Advanced Science 6, 1900925 (2019). doi: 10.1002/advs.201900925
[70] Wu, D. et al. Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip. Laser & Photonics Reviews 8, 458-467 (2014).
[71] Sugioka, K. Hybrid femtosecond laser three-dimensional micro- and nanoprocessing: a review. International Journal of Extreme Manufacturing 1, 012003 (2019). doi: 10.1088/2631-7990/ab0eda
[72] Sugioka, K. & Cheng, Y. Ultrafast lasers reliable tools for advanced materials processing. Light: Science & Applications 3, e149 (2014).
[73] MacKenzie, M. et al. Femtosecond laser fabrication of silver nanostructures on glass for surface enhanced Raman spectroscopy. Scientific Reports 9, 17058 (2019). doi: 10.1038/s41598-019-53328-6
[74] Xu, B. B. et al. Localized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channels. Lab on a Chip 11, 3347-3351 (2011). doi: 10.1039/c1lc20397e
[75] Ran, P. et al. Femtosecond photon-mediated plasma enhances photosynthesis of plasmonic nanostructures and their SERS applications. Small 15, 1804899 (2019). doi: 10.1002/smll.201804899
[76] Sipe, J. E. et al. Laser-induced periodic surface structure. I. Theory. Physical Review B 27, 1141-1154 (1983). doi: 10.1103/PhysRevB.27.1141
[77] Akram, M. et al. Femtosecond laser induced periodic surface structures for the enhancement of field emission properties of tungsten. Optical Materials Express 9, 3183-3192 (2019). doi: 10.1364/OME.9.003183
[78] Xu, S. Z. et al. Periodic surface structures on dielectrics upon femtosecond laser pulses irradiation. Optics Express 27, 8983-8993 (2019). doi: 10.1364/OE.27.008983
[79] Kunz, C., Müller, F. A. & Gräf S. Multifunctional hierarchical surface structures by femtosecond laser processing. Materials 11, 789 (2018). doi: 10.3390/ma11050789
[80] Shi, X. S. & Xu X. F. Laser fluence dependence of ripple formation on fused silica by femtosecond laser irradiation. Applied Physics A 125, 256 (2019). doi: 10.1007/s00339-019-2554-4
[81] Csontos, J. et al. Periodic structure formation and surface morphology evolution of glassy carbon surfaces applying 35-fs-200-ps laser pulses. Applied Physics A 122, 593 (2016). doi: 10.1007/s00339-016-0083-y
[82] Jalil, S. A. et al. Formation of controllable 1D and 2D periodic surface structures on cobalt by femtosecond double pulse laser irradiation. Applied Physics Letters 115, 031601 (2019). doi: 10.1063/1.5103216
[83] Li, C. et al. Shaped femtosecond laser induced photoreduction for highly controllable Au nanoparticles based on localized field enhancement and their SERS applications. Nanophotonics 9, 691-702 (2020). doi: 10.1515/nanoph-2019-0460
[84] Hamad, S. et al. Femtosecond laser-induced, nanoparticle-embedded periodic surface structures on crystalline silicon for reproducible and multi-utility SERS platforms. ACS Omega 3, 18420-18432 (2018). doi: 10.1021/acsomega.8b02629
[85] Bai, S. et al. Attomolar sensing based on liquid-interface assisted surface-enhanced Raman scattering in microfluidic chip by femtosecond laser processing. ACS Applied Materials & Interfaces 12, 42328-42338 (2020).
[86] Lin, Z. Y. et al. Realization of ~10 nm features on semiconductor surfaces via femtosecond laser direct patterning in far field and in ambient air. Nano Letters 20, 4947-4952 (2020). doi: 10.1021/acs.nanolett.0c01013.s001
[87] Zhang, D. S. & Sugioka, K. Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids. Opto-Electronic Advances 2, 190002 (2019).
[88] Hu, A. et al. Femtosecond laser welded nanostructures and plasmonic devices. Journal of Laser Applications 24, 042001 (2012). doi: 10.2351/1.3695174
[89] Liu, L. et al. Highly localized heat generation by femtosecond laser induced plasmon excitation in Ag nanowires. Applied Physics Letters 102, 073107 (2013). doi: 10.1063/1.4790189
[90] Huang, H. et al. Femtosecond laser fabrication of silver plasmonic structures for application as single particle SERS detectors. Materials Research Express 1, 025022 (2014). doi: 10.1088/2053-1591/1/2/025022
[91] Bai, S. et al. Ultraviolet pulsed laser interference lithography and application of periodic structured Ag-nanoparticle films for surface-enhanced Raman spectroscopy. Journal of Nanoparticle Research 16, 2470 (2014). doi: 10.1007/s11051-014-2470-7
[92] Huang, H. et al. High integrity interconnection of silver submicron/nanoparticles on silicon wafer by femtosecond laser irradiation. Nanotechnology 26, 025303 (2015). doi: 10.1088/0957-4484/26/2/025303
[93] Zong, C. et al. Plasmon-enhanced stimulated Raman scattering microscopy with single-molecule detection sensitivity. Nature Communications 10, 5318 (2019). doi: 10.1038/s41467-019-13230-1
[94] Fe’lidj, N. et al. A new approach to determine nanoparticle shape and size distributions of SERS-active gold-silver mixed colloids. New Journal of Chemistry 22, 725-732 (1998). doi: 10.1039/a709242c
[95] Wang, J. et al. The SERS intensity vs the size of Au nanoparticles. Acta Physico-Chimica Sinica. 15, 476-480 (1999). doi: 10.3866/PKU.WHXB19990518
[96] Félidj, N., Aubard, J. & Lévi, G. Morphology of silver and gold “SERS active” substrates from optical spectroscopy experiments and numerical simulations. Physica Status Solidi (A) 175, 367-372 (1999). doi: 10.1002/(SICI)1521-396X(199909)175:1<367::AID-PSSA367>3.0.CO;2-2
[97] Liu, Z. et al. Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins. Advanced Materials 26, 2431-2439 (2014). doi: 10.1002/adma.201305106
[98] Zhou, L. et al. Irreversible accumulated SERS behavior of the molecule-linked silver and silver-doped titanium dioxide hybrid system. Nature Communications 11, 1785 (2020). doi: 10.1038/s41467-020-15484-6
[99] Huang, S. L. et al. Hierarchical ZnO/Si nanowire arrays as an effective substrate for surface-enhanced Raman scattering application. Sensors and Actuators B: Chemical 273, 48-55 (2018). doi: 10.1016/j.snb.2018.06.003
[100] Man, T. T. et al. A versatile biomolecular detection platform based on photo-induced enhanced Raman spectroscopy. Biosensors and Bioelectronics 147, 111742 (2020). doi: 10.1016/j.bios.2019.111742
[101] Glass, D. et al. Dynamics of photo-induced surface oxygen vacancies in metal-oxide semiconductors studied under ambient conditions. Advanced Science 6, 1901841 (2019). doi: 10.1002/advs.201901841
[102] Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nature Nanotechnology 10, 25-34 (2015). doi: 10.1038/nnano.2014.311
[103] Ben-Jaber, S. et al. Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules. Nature Communications 7, 12189 (2016). doi: 10.1038/ncomms12189
[104] Dong, S. L. et al. Springtail-inspired superamphiphobic ordered nanohoodoo arrays with quasi-doubly reentrant structures. Small 16, 2000779 (2020). doi: 10.1002/smll.202000779
[105] Yan, X. N. et al. Optimal hotspots of dynamic surfaced-enhanced Raman spectroscopy for drugs quantitative detection. Analytical Chemistry 89, 4875-4881 (2017). doi: 10.1021/acs.analchem.6b04688
[106] Wang, H. Y. et al. A hanging plasmonic droplet: three-dimensional SERS hotspots for a highly sensitive multiplex detection of amino acids. Analyst 140, 2973-2978 (2015). doi: 10.1039/C5AN00232J
[107] Kim, Y. K. et al. Mediating ordered assembly of gold nanorods by controlling droplet evaporation modes for surface enhanced Raman scattering. RSC Advances 4, 50091-50096 (2014). doi: 10.1039/C4RA07063A
[108] Barmi, M. R. et al. Aggregation kinetics of SERS-active nanoparticles in thermally stirred sessile droplets. Langmuir 29, 13614-13623 (2013). doi: 10.1021/la400949x
[109] Sun, H. H. et al. Pressure-induced SERS enhancement in a MoS2/Au/R6G system by a two-step charge transfer process. Nanoscale 11, 21493-21501 (2019). doi: 10.1039/C9NR07098B
[110] Lee, T. et al. Single functionalized pRNA/Gold nanoparticle for ultrasensitive microRNA detection using electrochemical surface-enhanced Raman spectroscopy. Advanced Science 7, 1902477 (2020). doi: 10.1002/advs.201902477
[111] Si, Y. M. et al. Target microRNA-responsive DNA hydrogel-based surface-enhanced Raman scattering sensor arrays for microRNA-marked cancer screening. Analytical Chemistry 92, 2649-2655 (2020). doi: 10.1021/acs.analchem.9b04606
[112] Sun, Y. D. et al. Three-dimensional hotspots in evaporating nanoparticle sols for ultrahigh Raman scattering: solid-liquid interface effects. Nanoscale 7, 6619-6626 (2015). doi: 10.1039/C5NR00359H
[113] Bhattacharjee, G. et al. Core-shell gold @silver hollow nanocubes for higher SERS enhancement and non-enzymatic biosensor. Materials Chemistry and Physics 239, 122113 (2020). doi: 10.1016/j.matchemphys.2019.122113
[114] Ibáñez, D. et al. Spectroelectrochemical elucidation of B vitamins present in multivitamin complexes by EC-SERS. Talanta 206, 120190 (2020). doi: 10.1016/j.talanta.2019.120190
[115] Xu, B. B. et al. On-chip fabrication of silver microflower arrays as a catalytic microreactor for allowing in situ SERS monitoring. Chemical Communications 48, 1680-1682 (2012). doi: 10.1039/C2CC16612G
[116] Yan, W. J. et al. In situ two-step photoreduced SERS materials for on-chip single-molecule spectroscopy with high reproducibility. Advanced Materials 29, 1702893 (2017). doi: 10.1002/adma.201702893
[117] Leem, H. W., Leem, J. & Sung, H. J. Photoinduced synthesis of Ag nanoparticles on ZnO nanowires for real-time SERS systems. RSC Advances 5, 51-57 (2015). doi: 10.1039/C4RA11296B
[118] Tong, L. M. et al. Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis. Lab on a Chip 9, 193-195 (2009). doi: 10.1039/B813204F
[119] Gao, R. K. et al. Fast and sensitive detection of an anthrax biomarker using SERS-based solenoid microfluidic sensor. Biosensors and Bioelectronics 72, 230-236 (2015). doi: 10.1016/j.bios.2015.05.005
[120] Mirsafavi, R. Y. et al. Detection of papaverine for the possible identification of illicit opium cultivation. Analytical Chemistry 89, 1684-1688 (2017). doi: 10.1021/acs.analchem.6b03797
[121] Abalde-Cela, S. et al. Real-time dual-channel multiplex SERS ultradetection. The Journal of Physical Chemistry Letters 5, 73-79 (2014). doi: 10.1021/jz402419k
[122] Sugioka, K. et al. Selective metallization of internal walls of hollow structures inside glass using femtosecond laser. Applied Physics Letters 86, 171910 (2015).
[123] Wang, J. P. et al. Gold nanoframeworks with mesopores for Raman-photoacoustic imaging and phoho-chemo tumor therapy in the second near-infrared biowindow. Advanced Functional Materials 30, 1908825 (2020). doi: 10.1002/adfm.201908825
[124] Bassi, B. et al. Tunable coating of gold nanostars: tailoring robust SERS labels for cell imaging. Nanotechnology 27, 265302 (2016). doi: 10.1088/0957-4484/27/26/265302
[125] Li, C. et al. Directing arrowhead nanorod dimers for microRNA in situ raman detection in living cells. Advanced Functional Materials 30, 2001451 (2020). doi: 10.1002/adfm.202001451
[126] Strozyk, M. S. et al. Spatial analysis of metal-PLGA hybrid microstructures using 3D SERS imaging. Advanced Functional Materials 27, 1701626 (2017). doi: 10.1002/adfm.201701626
[127] de Aberasturi, D. J. et al. Using SERS tags to image the three-dimensional structure of complex cell models. Advanced Functional Materials 30, 1909655 (2020). doi: 10.1002/adfm.201909655
[128] Huang, J. A. et al. SERS discrimination of single DNA bases in single oligonucleotides by electro-plasmonic trapping. Nature Communications 10, 5321 (2019). doi: 10.1038/s41467-019-13242-x
[129] Chen, C. et al. High spatial resolution nanoslit SERS for single-molecule nucleobase sensing. Nature Communications 9, 1733 (2018). doi: 10.1038/s41467-018-04118-7
[130] Azarin, S. M. et al. In vivo capture and label-free detection of early metastatic cells. Nature Communications 6, 8094 (2015). doi: 10.1038/ncomms9094
[131] Eom, G. et al. Nanogap-rich Au nanowire SERS sensor for ultrasensitive telomerase activity detection: application to gastric and breast cancer tissues diagnosis. Advanced Functional Materials 27, 1701832 (2017). doi: 10.1002/adfm.201701832
[132] Zhang, Z. et al. Tracking drug-induced epithelial-mesenchymal transition in breast cancer by a microfluidic surface-enhanced Raman spectroscopy immunoassay. Small 16, 1905614 (2020). doi: 10.1002/smll.201905614
[133] Li, L. H. et al. Surface-enhanced Raman spectroscopy (SERS) nanoprobes for ratiometric detection of cancer cells. Journal of Materials Chemistry B 7, 815-822 (2019). doi: 10.1039/C8TB02828A
[134] Haldavnekar, R., Venkatakrishnan, K. & Tan, B. Non plasmonic semiconductor quantum SERS probe as a pathway for in vitro cancer detection. Nature Communications 9, 3065 (2018). doi: 10.1038/s41467-018-05237-x
[135] Kim, M. S. et al. Design of magnetic-plasmonic nanoparticle assemblies via interface engineering of plasmonic shells for targeted cancer cell imaging and separation. Small 16, 2001103 (2020). doi: 10.1002/smll.202001103
[136] Gao, R. K. et al. Simultaneous immunoassays of dual prostate cancer markers using a SERS-based microdroplet channel. Biosensors and Bioelectronics 119, 126-133 (2018). doi: 10.1016/j.bios.2018.08.015
[137] Pallaoro, A. et al. Rapid identification by surface-enhanced Raman spectroscopy of cancer cells at low concentrations flowing in a microfluidic channel. ACS Nano 9, 4328-4336 (2015). doi: 10.1021/acsnano.5b00750
[138] Koo, K. M. et al. Design and clinical verification of surface-enhanced Raman spectroscopy diagnostic technology for individual cancer risk prediction. ACS Nano 12, 8362-8371 (2018). doi: 10.1021/acsnano.8b03698
[139] Yoshikawa, H. et al. Versatile micropatterning of plasmonic nanostructures by visible light induced electroless silver plating on gold nanoseeds. ACS Applied Materials & Interfaces 8, 23932-23940 (2016).
[140] Vasista, A. B. et al. Differential wavevector distribution of surface-enhanced Raman scattering and fluorescence in a film-coupled plasmonic nanowire cavity. Nano Letters 18, 650-655 (2018). doi: 10.1021/acs.nanolett.7b05080
[141] Li, P. et al. Silver nano-needles: focused optical field induced solution synthesis and application in remote-excitation nanofocusing SERS. Nanoscale 11, 2153-2161 (2019). doi: 10.1039/C8NR07141A