[1] Coullet, P., Gil, L. & Rocca, F. Optical vortices. Opt. Commun. 73, 403-408 (1989). doi: 10.1016/0030-4018(89)90180-6
[2] Graham, R. & Haken, H. Laserlight—first example of a second-order phase transition far away from thermal equilibrium. Z. Phys. 237, 31-46 (1970). doi: 10.1007/BF01400474
[3] Aranson, I. S. & Kramer, L. The world of the complex Ginzburg-Landau equation. Rev. Mod. Phys. 74, 99-143 (2002). doi: 10.1103/RevModPhys.74.99
[4] Coullet, P., Gil, L. & Lega, J. Defect-mediated turbulence. Phys. Rev. Lett. 62, 1619-1622 (1989). doi: 10.1103/PhysRevLett.62.1619
[5] Brambilla, M. et al. Transverse laser patterns. I. Phase singularity crystals. Phys. Rev. A 43, 5090-5113 (1991). doi: 10.1103/PhysRevA.43.5090
[6] Brambilla, M. et al. Transverse laser patterns. Ⅱ. Variational principle for pattern selection, spatial multistability, and laser hydrodynamics. Phys. Rev. A 43, 5114-5120 (1991). doi: 10.1103/PhysRevA.43.5114
[7] Rosanov, N. N., Fedorov, S. V. & Shatsev, A. N. Curvilinear motion of multivortex laser-soliton complexes with strong and weak coupling. Phys. Rev. Lett. 95, 053903 (2005). doi: 10.1103/PhysRevLett.95.053903
[8] Genevet, P. et al. Bistable and addressable localized vortices in semiconductor lasers. Phys. Rev. Lett. 104, 223902 (2010). doi: 10.1103/PhysRevLett.104.223902
[9] Barland, S. et al. Observation of "true" optical vortices in a laser system. in Nonlinear Photonics and Novel Optical Phenomena (eds Chen, Z. G. & Morandotti, R.) 195-205 (Springer, New York, NY, 2012).
[10] Bazhenov, V. Y., Soskin, M. S. & Vasnetsov, M. V. Screw dislocations in light wavefronts. J. Mod. Opt. 39, 985-990 (1992). doi: 10.1080/09500349214551011
[11] Crasovan, L. C., Malomed, B. A. & Mihalache, D. Stable vortex solitons in the two-dimensional Ginzburg-Landau equation. Phys. Rev. E 63, 016605 (2000). doi: 10.1103/PhysRevE.63.016605
[12] Mihalache, D. et al. Stable topological modes in two-dimensional Ginzburg-Landau models with trapping potentials. Phys. Rev. A 82, 023813 (2010). doi: 10.1103/PhysRevA.82.023813
[13] Fedorov, S. V. et al. Topologically multicharged and multihumped rotating solitons in wide-aperture lasers with a saturable absorber. IEEE J. Quantum Electron. 39, 197-205 (2003). doi: 10.1109/JQE.2002.807212
[14] Paulau, P. V. et al. Vortex solitons in lasers with feedback. Opt. Express 18, 8859-8866 (2010). doi: 10.1364/OE.18.008859
[15] Mihalache, D. et al. Stable vortex tori in the three-dimensional cubic-quintic Ginzburg-Landau equation. Phys. Rev. Lett. 97, 073904 (2006). doi: 10.1103/PhysRevLett.97.073904
[16] Allen, L. et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185-8189 (1992). doi: 10.1103/PhysRevA.45.8185
[17] Beijersbergen, M. W. et al. Astigmatic laser mode converters and transfer of orbital angular momentum. Opt. Commun. 96, 123-132 (1993). doi: 10.1016/0030-4018(93)90535-D
[18] Dennis, M. R., O'Holleran, K. & Padgett, M. J. Singular optics: optical vortices and polarization singularities. Prog. Opt. 53, 293-363 (2009). doi: 10.1016/S0079-6638(08)00205-9
[19] He, H. et al. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett. 75, 826-829 (1995). doi: 10.1103/PhysRevLett.75.826
[20] Gahagan, K. T. & Swartzlander, G. A. Optical vortex trapping of particles. Opt. Lett. 21, 827-829 (1996). doi: 10.1364/OL.21.000827
[21] Simpson, N. B., Allen, L. & Padgett, M. J. Optical tweezers and optical spanners with Laguerre-Gaussian modes. J. Mod. Opt. 43, 2485-2491 (1996). doi: 10.1080/09500349608230675
[22] Swartzlander, G. A. Jr. & Law, C. T. Optical vortex solitons observed in Kerr nonlinear media. Phys. Rev. Lett. 69, 2503-2506 (1992). doi: 10.1103/PhysRevLett.69.2503
[23] Tikhonenko, V., Christou, J. & Luther-Daves, B. Spiraling bright spatial solitons formed by the breakup of an optical vortex in a saturable self-focusing medium. J. Opt. Soc. Am. B 12, 2046-2052 (1995). doi: 10.1364/JOSAB.12.002046
[24] Firth, W. J. & Skryabin, D. V. Optical solitons carrying orbital angular momentum. Phys. Rev. Lett. 79, 2450-2453 (1997). doi: 10.1103/PhysRevLett.79.2450
[25] Dholakia, K. et al. Second-harmonic generation and the orbital angular momentum of light. Phys. Rev. A 54, R3742-R3745 (1996). doi: 10.1103/PhysRevA.54.R3742
[26] Courtial, J. et al. Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes. Phys. Rev. A 56, 4193-4196 (1997). doi: 10.1103/PhysRevA.56.4193
[27] Soskin, M. S. et al. Topological charge and angular momentum of light beams carrying optical vortices. Phys. Rev. A 56, 4064-4075 (1997). doi: 10.1103/PhysRevA.56.4064
[28] Courtial, J. et al. Rotational frequency shift of a light beam. Phys. Rev. Lett. 81, 4828-4830 (1998). doi: 10.1103/PhysRevLett.81.4828
[29] Scheuer, J. & Orenstein, M. Optical vortices crystals: spontaneous generation in nonlinear semiconductor microcavities. Science 285, 230-233 (1999). doi: 10.1126/science.285.5425.230
[30] Mair, A. et al. Entanglement of the orbital angular momentum states of photons. Nature 412, 313-316 (2001). doi: 10.1038/35085529
[31] Molina-Terriza, G., Torres, J. P. & Torner, L. Twisted photons. Nat. Phys. 3, 305-310 (2007). doi: 10.1038/nphys607
[32] Paterson, L. et al. Controlled rotation of optically trapped microscopic particles. Science 292, 912-914 (2001). doi: 10.1126/science.1058591
[33] MacDonald, M. P. et al. Creation and manipulation of three-dimensional optically trapped structures. Science 296, 1101-1103 (2002). doi: 10.1126/science.1069571
[34] Grier, D. G. A revolution in optical manipulation. Nature 424, 810-816 (2003). doi: 10.1038/nature01935
[35] Harwit, M. Photon orbital angular momentum in astrophysics. Astrophys. J. 597, 1266-1270 (2003). doi: 10.1086/378623
[36] Zhuang, X. W. Unraveling DNA condensation with optical tweezers. Science 305, 188-190 (2004). doi: 10.1126/science.1100603
[37] Fürhapter, S. et al. Spiral phase contrast imaging in microscopy. Opt. Express 13, 689-694 (2005). doi: 10.1364/OPEX.13.000689
[38] Tamburini, F. et al. Overcoming the Rayleigh criterion limit with optical vortices. Phys. Rev. Lett. 97, 163903 (2006). doi: 10.1103/PhysRevLett.97.163903
[39] Barreiro, J. T., Wei, T. C. & Kwiat, P. G. Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 4, 282-286 (2008). doi: 10.1038/nphys919
[40] Hickmann, J. M. et al. Unveiling a truncated optical lattice associated with a triangular aperture using light's orbital angular momentum. Phys. Rev. Lett. 105, 053904 (2010). doi: 10.1103/PhysRevLett.105.053904
[41] Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333-337 (2011). doi: 10.1126/science.1210713
[42] Cai, X. L. et al. Integrated compact optical vortex beam emitters. Science 338, 363-366 (2012). doi: 10.1126/science.1226528
[43] Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat, Photonics 6, 488-496 (2012). doi: 10.1038/nphoton.2012.138
[44] Bozinovic, N. et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545-1548 (2013). doi: 10.1126/science.1237861
[45] Fickler, R. et al. Quantum entanglement of angular momentum states with quantum numbers up to 10, 010. Proc. Natl Acad. Sci. USA 113, 13642-13647 (2016). doi: 10.1073/pnas.1616889113
[46] Devlin, R. C. et al. Arbitrary spin-to-orbital angular momentum conversion of light. Science 358, 896-901 (2017). doi: 10.1126/science.aao5392
[47] Stav, T. et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science 361, 1101-1104 (2018). doi: 10.1126/science.aat9042
[48] Kong, F. Q. et al. Controlling the orbital angular momentum of high harmonic vortices. Nat. Commun. 8, 14970 (2017). doi: 10.1038/ncomms14970
[49] Gauthier, D. et al. Tunable orbital angular momentum in high-harmonic generation. Nat. Commun. 8, 14971 (2017). doi: 10.1038/ncomms14971
[50] Lee, J. C. T. et al. Laguerre-Gauss and Hermite-Gauss soft X-ray states generated using diffractive optics. Nat. Photonics 13, 205-209 (2019). doi: 10.1038/s41566-018-0328-8
[51] Xie, Z. W. et al. Ultra-broadband on-chip twisted light emitter for optical communications. Light Sci. Appl. 7, 18001 (2018). doi: 10.1038/lsa.2018.1
[52] Zambon, N. C. et al. Optically controlling the emission chirality of microlasers. Nat. Photonics 13, 283-288 (2019). doi: 10.1038/s41566-019-0380-z
[53] Rego, L. et al. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science 364, eaaw9486 (2019). doi: 10.1126/science.aaw9486
[54] Nye, J. F. & Berry, M. V. Dislocations in wave trains. Proc. R Soc A Math. Phys. Eng. Sci. 336, 165-190 (1974).
[55] Penrose, L. S. & Penrose, R. Impossible objects: a special type of visual illusion. Br. J. Psychol. 49, 31-33 (1958). doi: 10.1111/j.2044-8295.1958.tb00634.x
[56] Bauer, T. et al. Observation of optical polarization Möbius strips. Science 347, 964-966 (2015). doi: 10.1126/science.1260635
[57] Leach, J., Yao, E. & Padgett, M. J. Observation of the vortex structure of a non-integer vortex beam. New J. Phys. 6, 71 (2004). doi: 10.1088/1367-2630/6/1/071
[58] Berry, M. V. Optical vortices evolving from helicoidal integer and fractional phase steps. J. Opt. A Pure Appl. Opt. 6, 259-268 (2004). doi: 10.1088/1464-4258/6/2/018
[59] Verbeeck, J., Tian, H. & Schattschneider, P. Production and application of electron vortex beams. Nature 467, 301-304 (2010). doi: 10.1038/nature09366
[60] Clark, C. W. et al. Controlling neutron orbital angular momentum. Nature 525, 504-506 (2015). doi: 10.1038/nature15265
[61] Wang, X. W. et al. Recent advances on optical vortex generation. Nanophotonics 7, 1533-1556 (2018). doi: 10.1515/nanoph-2018-0072
[62] Zhu, L. & Wang, J. A review of multiple optical vortices generation: methods and applications. Front. Optoelectron. 12, 52-68 (2019). doi: 10.1007/s12200-019-0910-9
[63] Chen, M. L. M., Jiang, L. J. & Sha, W. E. I. Orbital angular momentum generation and detection by geometric-phase based metasurfaces. Appl. Sci. 8, 362 (2018). doi: 10.3390/app8030362
[64] Barnett, S. M., Babiker, M. & Padgett, M. J. Optical orbital angular momentum. Philos. Trans. R Soc. A Math. Phys. Eng. Sci. 375, 20150444 (2017). doi: 10.1098/rsta.2015.0444
[65] Padgett, M. J. Orbital angular momentum 25 years on[Invited]. Opt. Express 25, 11265-11274 (2017). doi: 10.1364/OE.25.011265
[66] Yao, A. M. & Padgett, M. J. Orbital angular momentum: origins, behavior and applications. Adv. Opti. Photonics 3, 161-204 (2011). doi: 10.1364/AOP.3.000161
[67] Milonni, P. W. & Boyd, R. W. Momentum of light in a dielectric medium. Adv. Opt. Photonics 2, 519-553 (2010). doi: 10.1364/AOP.2.000519
[68] Nelson, D. F. Momentum, pseudomomentum, and wave momentum: toward resolving the Minkowski-Abraham controversy. Phys. Rev. A 44, 3985-3996 (1991). doi: 10.1103/PhysRevA.44.3985
[69] Bliokh, K. Y., Bekshaev, A. Y. & Nori, F. Optical momentum, spin, and angular momentum in dispersive media. Phys. Rev. Lett. 119, 073901 (2017). doi: 10.1103/PhysRevLett.119.073901
[70] Bliokh, K. Y. & Nori, F. Transverse and longitudinal angular momenta of light. Phys. Rep. 592, 1-38 (2015). doi: 10.1016/j.physrep.2015.06.003
[71] Karimi, E. & Boyd, R. W. Classical entanglement? Science 350, 1172-1173 (2015). doi: 10.1126/science.aad7174
[72] Chen, Y. F., Lu, T. H. & Huang, K. F. Observation of spatially coherent polarization vector fields and visualization of vector singularities. Phys. Rev. Lett. 96, 033901 (2006). doi: 10.1103/PhysRevLett.96.033901
[73] Chen, Y. F. et al. Observation of vector vortex lattices in polarization states of an isotropic microcavity laser. Phys. Rev. Lett. 90, 053904 (2003). doi: 10.1103/PhysRevLett.90.053904
[74] Rosales-Guzmán, C., Ndagano, B. & Forbes, A. A review of complex vector light fields and their applications. J. Opt. 20, 123001 (2018). doi: 10.1088/2040-8986/aaeb7d
[75] Abramochkin, E. & Alieva, T. Closed-form expression for mutual intensity evolution of Hermite-Laguerre-Gaussian Schell-model beams. Opt. Lett. 42, 4032-4035 (2017). doi: 10.1364/OL.42.004032
[76] Alieva, T. & Bastiaans, M. J. Mode mapping in paraxial lossless optics. Opt. Lett. 30, 1461-1463 (2005). doi: 10.1364/OL.30.001461
[77] Abramochkin, E. G. & Volostnikov, V. G. Generalized Hermite-Laguerre-Gauss beams. Phys. Wave Phenom. 18, 14-22 (2010). doi: 10.3103/S1541308X10010036
[78] Bandres, M. A. & Gutiérrez-Vega, J. C. Ince-Gaussian beams. Opt. Lett. 29, 144-146 (2004). doi: 10.1364/OL.29.000144
[79] Bandres, M. A. & Gutiérrez-Vega, J. C. Elliptical beams. Opt. Express 16, 21087-21092 (2008). doi: 10.1364/OE.16.021087
[80] Bandres, M. A. & Gutiérrez-Vega, J. C. Ince-Gaussian modes of the paraxial wave equation and stable resonators. J. Opt. Soc. Am. A 21, 873-880 (2004). doi: 10.1364/JOSAA.21.000873
[81] Bentley, J. B. et al. Generation of helical Ince-Gaussian beams with a liquid-crystal display. Opt. Lett. 31, 649-651 (2006). doi: 10.1364/OL.31.000649
[82] Woerdemann, M., Alpmann, C. & Denz, C. Optical assembly of microparticles into highly ordered structures using Ince-Gaussian beams. Appl. Phys. Lett. 98, 111101 (2011). doi: 10.1063/1.3561770
[83] Shen, Y. J. et al. Hybrid topological evolution of multi-singularity vortex beams: generalized nature for helical-Ince-Gaussian and Hermite-Laguerre-Gaussian modes. J. Opt. Soc. Am. A 36, 578-587 (2019). doi: 10.1364/JOSAA.36.000578
[84] Volke-Sepulveda, K. et al. Orbital angular momentum of a high-order Bessel light beam. J. Opt. B Quantum Semiclassical Opt. 4, S82-S89 (2002). doi: 10.1088/1464-4266/4/2/373
[85] Gutiérrez-Vega, J. C., Iturbe-Castillo, M. D. & Chávez-Cerda, S. Alternative formulation for invariant optical fields: Mathieu beams. Opt. Lett. 25, 1493-1495 (2000). doi: 10.1364/OL.25.001493
[86] Lóxpez-Mariscal, C. et al. Orbital angular momentum transfer in helical Mathieu beams. Opt. Express 14, 4182-4187 (2006). doi: 10.1364/OE.14.004182
[87] Chávez-Cerda, S. et al. Holographic generation and orbital angular momentum of high-order Mathieu beams. J. Opt. B Quantum Semiclassical Opt. 4, S52-S57 (2002). doi: 10.1088/1464-4266/4/2/368
[88] Alpmann, C. et al. Mathieu beams as versatile light moulds for 3D micro particle assemblies. Opt. Express 18, 26084-26091 (2010). doi: 10.1364/OE.18.026084
[89] Zhu, L. & Wang, J. Demonstration of obstruction-free data-carrying N-fold Bessel modes multicasting from a single Gaussian mode. Opt. Lett. 40, 5463-5466 (2015). doi: 10.1364/OL.40.005463
[90] Bužek, V. & Quang, T. Generalized coherent state for bosonic realization of SU(2)Lie algebra. J. Opt. Soc. Am. B 6, 2447-2449 (1989). doi: 10.1364/JOSAB.6.002447
[91] Lin, Y. C. et al. Model of commensurate harmonic oscillators with SU(2) coupling interactions: Analogous observation in laser transverse modes. Phys. Rev. E 85, 046217 (2012). doi: 10.1103/PhysRevE.85.046217
[92] Tuan, P. H. et al. Realizing high-pulse-energy large-angular-momentum beams by astigmatic transformation of geometric modes in an Nd:YAG/Cr4+:YAG laser. IEEE J. Sel. Top. Quantum Electron. 24, 1600809 (2018).
[93] Tung, J. C. et al. Exploring vortex structures in orbital-angular-momentum beams generated from planar geometric modes with a mode converter. Opt. Express 24, 22796-22805 (2016). doi: 10.1364/OE.24.022796
[94] Chen, Y. F. et al. Devil's staircase in three-dimensional coherent waves localized on Lissajous parametric surfaces. Phys. Rev. Lett. 96, 213902 (2006). doi: 10.1103/PhysRevLett.96.213902
[95] Lu, T. H. et al. Three-dimensional coherent optical waves localized on trochoidal parametric surfaces. Phys. Rev. Lett. 101, 233901 (2008). doi: 10.1103/PhysRevLett.101.233901
[96] Shen, Y. J. et al. Polygonal vortex beams. IEEE Photonics J. 10, 1503016 (2018).
[97] Shen, Y. J., Fu, X. & Gong, M. L. Truncated triangular diffraction lattices and orbital-angular-momentum detection of vortex SU(2) geometric modes. Opt. Express 26, 25545-25557 (2018). doi: 10.1364/OE.26.025545
[98] Freund, I. Optical Möbius strips in three-dimensional ellipse fields: I. Lines of circular polarization. Opt. Commun. 283, 1-15 (2010). doi: 10.1016/j.optcom.2009.09.042
[99] Freund, I. Optical Möbius strips in three dimensional ellipse fields: Ⅱ. Lines of linear polarization. Opt. Commun. 283, 16-28 (2010). doi: 10.1016/j.optcom.2009.09.037
[100] Galvez, E. J. et al. Multitwist Möbius strips and twisted ribbons in the polarization of paraxial light beams. Sci. Rep. 7, 13653 (2017). doi: 10.1038/s41598-017-13199-1
[101] Veretenov, N. A., Fedorov, S. V. & Rosanov, N. N. Topological vortex and knotted dissipative optical 3D solitons generated by 2D vortex solitons. Phys. Rev. Lett. 119, 263901 (2017). doi: 10.1103/PhysRevLett.119.263901
[102] Leach, J. et al. Vortex knots in light. New J. Phys. 7, 55 (2005). doi: 10.1088/1367-2630/7/1/055
[103] Kleckner, D. & Irvine, W. T. M. Creation and dynamics of knotted vortices. Nat. Phys. 9, 253-258 (2013). doi: 10.1038/nphys2560
[104] Dennis, M. R. et al. Isolated optical vortex knots. Nat. Phys. 6, 118-121 (2010). doi: 10.1038/nphys1504
[105] Tempone-Wiltshire, S. J., Johnstone, S. P. & Helmerson, K. Optical vortex knots-one photon at a time. Sci. Rep. 6, 24463 (2016). doi: 10.1038/srep24463
[106] Cunzhi, S., Pu, J. X. & Chávez-Cerda, S. Elegant Cartesian Laguerre-Hermite-Gaussian laser cavity modes. Opt. Lett. 40, 1105-1108 (2015). doi: 10.1364/OL.40.001105
[107] Ellenbogen, T. et al. Nonlinear generation and manipulation of Airy beams. Nat. Photonics 3, 395-398 (2009). doi: 10.1038/nphoton.2009.95
[108] Ring, J. D. et al. Auto-focusing and self-healing of Pearcey beams. Opt. Express 20, 18955-18966 (2012). doi: 10.1364/OE.20.018955
[109] Bandres, M. A., Gutiérrez-Vega, J. C. & Chávez-Cerda, S. Parabolic nondiffracting optical wave fields. Opt. Lett. 29, 44-46 (2004). doi: 10.1364/OL.29.000044
[110] O'Holleran, K. et al. Fractality of light's darkness. Phys. Rev. Lett. 100, 053902 (2008). doi: 10.1103/PhysRevLett.100.053902
[111] Zhang, L. G. et al. Deflection of a reflected intense vortex laser beam. Phys. Rev. Lett. 117, 113904 (2016). doi: 10.1103/PhysRevLett.117.113904
[112] Omatsu, T., Miyamoto, K. & Lee, A. J. Wavelength-versatile optical vortex lasers. J. Opt. 19, 123002 (2017). doi: 10.1088/2040-8986/aa9445
[113] de Araujo, L. E. E. & Anderson, M. E. Measuring vortex charge with a triangular aperture. Opt. Lett. 36, 787-789 (2011). doi: 10.1364/OL.36.000787
[114] Mourka, A. et al. Visualization of the birth of an optical vortex using diffraction from a triangular aperture. Opt. Express 19, 5760-5771 (2011). doi: 10.1364/OE.19.005760
[115] Melo, L. A. et al. Direct measurement of the topological charge in elliptical beams using diffraction by a triangular aperture. Sci. Rep. 8, 6370 (2018). doi: 10.1038/s41598-018-24928-5
[116] Ghai, D. P., Senthilkumaran, P. & Sirohi, R. S. Single-slit diffraction of an optical beam with phase singularity. Opt. Lasers Eng. 47, 123-126 (2009). doi: 10.1016/j.optlaseng.2008.07.019
[117] Mesquita, P. H. F. et al. Engineering a square truncated lattice with light's orbital angular momentum. Opt. Express 19, 20616-20621 (2011). doi: 10.1364/OE.19.020616
[118] Liu, Y. X. et al. Propagation of an optical vortex beam through a diamond-shaped aperture. Opt. Laser Technol. 45, 473-479 (2013). doi: 10.1016/j.optlastec.2012.06.007
[119] Ambuj, A., Vyas, R. & Singh, S. Diffraction of orbital angular momentum carrying optical beams by a circular aperture. Opt. Lett. 39, 5475-5478 (2014). doi: 10.1364/OL.39.005475
[120] Taira, Y. & Zhang, S. K. Split in phase singularities of an optical vortex by off-axis diffraction through a simple circular aperture. Opt. Lett. 42, 1373-1376 (2017). doi: 10.1364/OL.42.001373
[121] Bahl, M. & Senthilkumaran, P. Energy circulations in singular beams diffracted through an isosceles right triangular aperture. Phys. Rev. A 92, 013831 (2015). doi: 10.1103/PhysRevA.92.013831
[122] Chen, R. S. et al. Detecting the topological charge of optical vortex beams using a sectorial screen. Appl. Opt. 56, 4868-4872 (2017). doi: 10.1364/AO.56.004868
[123] Zhang, W. H. et al. Experimental demonstration of twisted light's diffraction theory based on digital spiral imaging. Chin. Opt. Lett. 14, 110501 (2016). doi: 10.3788/COL201614.110501
[124] Ram, B. S. B., Sharma, A. & Senthilkumaran, P. Diffraction of V-point singularities through triangular apertures. Opt. Express 25, 10270-10275 (2017). doi: 10.1364/OE.25.010270
[125] Holleczek, A. et al. Classical and quantum properties of cylindrically polarized states of light. Opt. Express 19, 9714-9736 (2011). doi: 10.1364/OE.19.009714
[126] Milione, G. et al. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light. Phys. Rev. Lett. 107, 053601 (2011). doi: 10.1103/PhysRevLett.107.053601
[127] Naidoo, D. et al. Controlled generation of higher-order Poincaré sphere beams from a laser. Nat. Photonics 10, 327-332 (2016). doi: 10.1038/nphoton.2016.37
[128] Yi, X. N. et al. Hybrid-order Poincaré sphere. Phys. Rev. A 91, 023801 (2015). doi: 10.1103/PhysRevA.91.023801
[129] Liu, Z. X. et al. Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere. Photonics Res. 5, 15-21 (2017). doi: 10.1364/PRJ.5.000015
[130] Wang, R. S. et al. Electrically driven generation of arbitrary vector vortex beams on the hybrid-order Poincaré sphere. Opt. Lett. 43, 3570-3573 (2018). doi: 10.1364/OL.43.003570
[131] Franke-Arnold, S. et al. Uncertainty principle for angular position and angular momentum. New J. Phys. 6, 103 (2004). doi: 10.1088/1367-2630/6/1/103
[132] Leach, J. et al. Quantum correlations in optical angle-orbital angular momentum variables. Science 329, 662-665 (2010). doi: 10.1126/science.1190523
[133] Jha, A. K. et al. Fourier relationship between the angle and angular momentum of entangled photons. Phys. Rev. A 78, 043810 (2008). doi: 10.1103/PhysRevA.78.043810
[134] Erhard, M. et al. Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl. 7, 17146 (2018). doi: 10.1038/lsa.2017.146
[135] Otte, E. et al. Entanglement beating in free space through spin-orbit coupling. Light Sci. Appl. 7, 18009 (2018). doi: 10.1038/lsa.2018.9
[136] Bliokh, K. Y. et al. Spin-orbit interactions of light. Nat. Photonics 9, 796-808 (2015). doi: 10.1038/nphoton.2015.201
[137] Cardano, F. & Marrucci, L. Spin-orbit photonics. Nat. Photonics 9, 776-778 (2015). doi: 10.1038/nphoton.2015.232
[138] Shao, Z. K. et al. Spin-orbit interaction of light induced by transverse spin angular momentum engineering. Nat. Commun. 9, 926 (2018). doi: 10.1038/s41467-018-03237-5
[139] Magaña-Loaiza, O. S. et al. Hanbury brown and Twiss interferometry with twisted light. Sci. Adv. 2, e1501143 (2016). doi: 10.1126/sciadv.1501143
[140] Mohanty, A. et al. Quantum interference between transverse spatial waveguide modes. Nat. Commun. 8, 14010 (2017). doi: 10.1038/ncomms14010
[141] Zhang, Y. W. et al. Engineering two-photon high-dimensional states through quantum interference. Sci. Adv. 2, e1501165 (2016). doi: 10.1126/sciadv.1501165
[142] Yin, X. B. et al. Photonic spin Hall effect at metasurfaces. Science 339, 1405-1407 (2013). doi: 10.1126/science.1231758
[143] Liu, Y. C. et al. Photonic spin Hall effect in metasurfaces: a brief review. Nanophotonics 6, 51-70 (2017). doi: 10.1515/nanoph-2015-0155
[144] Forbes, A., Dudley, A. & McLaren, M. Creation and detection of optical modes with spatial light modulators. Adv. Opt. Photonics 8, 200-227 (2016). doi: 10.1364/AOP.8.000200
[145] Berkhout, G. C. G. et al. Efficient sorting of orbital angular momentum states of light. Phys. Rev. Lett. 105, 153601 (2010). doi: 10.1103/PhysRevLett.105.153601
[146] Wen, Y. H. et al. Spiral transformation for high-resolution and efficient sorting of optical vortex modes. Phys. Rev. Lett. 120, 193904 (2018). doi: 10.1103/PhysRevLett.120.193904
[147] Liu, G. G. et al. Measurement of the topological charge and index of vortex vector optical fields with a space-variant half-wave plate. Opt. Lett. 43, 823-826 (2018). doi: 10.1364/OL.43.000823
[148] Ndagano, B. et al. Beam quality measure for vector beams. Opt. Lett. 41, 3407-3410 (2016). doi: 10.1364/OL.41.003407
[149] McLaren, M., Konrad, T. & Forbes, A. Measuring the nonseparability of vector vortex beams. Phys. Rev. A 92, 023833 (2015). doi: 10.1103/PhysRevA.92.023833
[150] Forbes, A. Controlling light's helicity at the source: orbital angular momentum states from lasers. Philos. Trans. R Soc. A Math. Phys. Eng. Sci. 375, 20150436 (2017). doi: 10.1098/rsta.2015.0436
[151] Qiao, Z. et al. Generating high-charge optical vortices directly from laser up to 288th order. Laser Photonics Rev. 12, 1800019 (2018). doi: 10.1002/lpor.201800019
[152] Lee, C. Y. et al. Generation of higher order vortex beams from a YVO4/Nd:YVO4 self-Raman laser via off-axis pumping with mode converter. IEEE J. Sel. Top Quantum Electron. 21, 1600305 (2015).
[153] Sueda, K. et al. Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses. Opt. Express 12, 3548-3553 (2004). doi: 10.1364/OPEX.12.003548
[154] Cardano, F. et al. Polarization pattern of vector vortex beams generated by q-plates with different topological charges. Appl. Opt. 51, C1-C6 (2012). doi: 10.1364/AO.51.0000C1
[155] Marrucci, L. The q-plate and its future. J. Nanophotonics 7, 078598 (2013). doi: 10.1117/1.JNP.7.078598
[156] Brasselet, E. Tunable high-resolution macroscopic self-engineered geometric phase optical elements. Phys. Rev. Lett. 121, 033901 (2018). doi: 10.1103/PhysRevLett.121.033901
[157] Mock, A., Sounas, D. & Alù, A. Tunable orbital angular momentum radiation from angular-momentum-biased microcavities. Phys. Rev. Lett. 121, 103901 (2018). doi: 10.1103/PhysRevLett.121.103901
[158] Zhou, N. et al. Generating and synthesizing ultrabroadband twisted light using a compact silicon chip. Opt. Lett. 43, 3140-3143 (2018). doi: 10.1364/OL.43.003140
[159] Horikawa, M. T. et al. Handedness control in a tunable midinfrared (6.0-12.5 μm) vortex laser. J. Opt. Soc. Am. B 32, 2406-2410 (2015). doi: 10.1364/JOSAB.32.002406
[160] Abulikemu, A. et al. Widely-tunable vortex output from a singly resonant optical parametric oscillator. Opt. Express 23, 18338-18344 (2015). doi: 10.1364/OE.23.018338
[161] Zhang, W. D. et al. Optical vortex generation with wavelength tunability based on an acoustically-induced fiber grating. Opt. Express 24, 19278-19285 (2016). doi: 10.1364/OE.24.019278
[162] Lyubopytov, V. S. et al. Simultaneous wavelength and orbital angular momentum demultiplexing using tunable MEMS-based Fabry-Perot filter. Opt. Express 25, 9634-9646 (2017). doi: 10.1364/OE.25.009634
[163] Liu, Q. Y. et al. Wavelength- and OAM-tunable vortex laser with a reflective volume Bragg grating. Opt. Express 25, 23312-23319 (2017). doi: 10.1364/OE.25.023312
[164] Yao, S. Z. et al. Tunable orbital angular momentum generation using all-fiber fused coupler. IEEE Photonics Technol. Lett. 30, 99-102 (2018). doi: 10.1109/LPT.2017.2776981
[165] Shen, Y. J. et al. Wavelength-tunable Hermite-Gaussian modes and an orbital-angular-momentum-tunable vortex beam in a dual-off-axis pumped Yb:CALGO laser. Opt. Lett. 43, 291-294 (2018). doi: 10.1364/OL.43.000291
[166] Shen, Y. J. et al. Dual-wavelength vortex beam with high stability in a diode-pumped Yb:CaGdAlO4 laser. Laser Phys. Lett. 15, 055803 (2018). doi: 10.1088/1612-202X/aaaa97
[167] Wang, S. et al. Generation of wavelength- and OAM-tunable vortex beam at low threshold. Opt. Express 26, 18164-18170 (2018). doi: 10.1364/OE.26.018164
[168] Zhou, N., Liu, J. & Wang, J. Reconfigurable and tunable twisted light laser. Sci. Rep. 8, 11394 (2018). doi: 10.1038/s41598-018-29868-8
[169] Fadeyeva, T. A. et al. Spatially engineered polarization states and optical vortices in uniaxial crystals. Opt. Express 18, 10848-10863 (2010). doi: 10.1364/OE.18.010848
[170] Rafayelyan, M., Tkachenko, G. & Brasselet, E. Reflective spin-orbit geometric phase from chiral anisotropic optical media. Phys. Rev. Lett. 116, 253902 (2016). doi: 10.1103/PhysRevLett.116.253902
[171] Kobashi, J., Yoshida, H. & Ozaki, M. Polychromatic optical vortex generation from patterned cholesteric liquid crystals. Phys. Rev. Lett. 116, 253903 (2016). doi: 10.1103/PhysRevLett.116.253903
[172] Piccirillo, B. et al. Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate. Appl. Phys. Lett. 97, 241104 (2010). doi: 10.1063/1.3527083
[173] Toyoda, K. et al. Using optical vortex to control the chirality of twisted metal nanostructures. Nano Lett. 12, 3645-3649 (2012). doi: 10.1021/nl301347j
[174] Yang, L. et al. Direct laser writing of complex microtubes using femtosecond vortex beams. Appl. Phys. Lett. 110, 221103 (2017). doi: 10.1063/1.4984744
[175] Zürch, M. et al. Strong-field physics with singular light beams. Nat. Phys. 8, 743-746 (2012). doi: 10.1038/nphys2397
[176] Ran, L. L., Guo, Z. Y. & Qu, S. L. Rotational motions of optically trapped microscopic particles by a vortex femtosecond laser. Chin. Phys. B 21, 104206 (2012). doi: 10.1088/1674-1056/21/10/104206
[177] Ishaaya, A. A. et al. Efficient selection of high-order Laguerre-Gaussian modes in a Q-switched Nd:YAG laser. IEEE J. Quantum Electron. 39, 74-82 (2003). doi: 10.1109/JQE.2002.806164
[178] Kim, D. J., Kim, J. W. & Clarkson, W. A. Q-switched Nd:YAG optical vortex lasers. Opt. Express 21, 29449-29454 (2013). doi: 10.1364/OE.21.029449
[179] Zhao, Y. G. et al. 1 mJ pulsed vortex laser at 1645 nm with well-defined helicity. Opt. Express 24, 15596-15602 (2016). doi: 10.1364/OE.24.015596
[180] Chang, C. C. et al. Generating high-peak-power structured lights in selectively pumped passively Q-switched lasers with astigmatic mode transformations. Laser Phys. 27, 125805 (2017). doi: 10.1088/1555-6611/aa92e2
[181] He, H. S. et al. Low-threshold, nanosecond, high-repetition-rate vortex pulses with controllable helicity generated in Cr, Nd:YAG self-Q-switched microchip laser. Laser Phys. 28, 055802 (2018).
[182] Wang, Y. B. et al. Generation of 1535-nm pulsed vortex beam in a diode-pumped Er, Yb:glass microchip laser. IEEE Photonics Technol. Lett. 30, 891-894 (2018). doi: 10.1109/LPT.2018.2822838
[183] Koyama, M. et al. Power scaling of a picosecond vortex laser based on a stressed Yb-doped fiber amplifier. Opt. Express 19, 994-999 (2011). doi: 10.1364/OE.19.000994
[184] Liang, H. C. et al. Compact efficient multi-GHz Kerr-lens mode-locked diode-pumped Nd:YVO4 laser. Opt. Express 16, 21149-21154 (2008). doi: 10.1364/OE.16.021149
[185] Liang, H. C. et al. Picosecond optical vortex converted from multigigahertz self-mode-locked high-order Hermite-Gaussian Nd:GdVO4 lasers. Opt. Letters 34, 3842-3844 (2009). doi: 10.1364/OL.34.003842
[186] Liang, H. C. et al. Total self-mode locking of multi-pass geometric modes in diode-pumped Nd:YVO4 lasers. Laser Phys. Lett. 10, 105804 (2013). doi: 10.1088/1612-2011/10/10/105804
[187] Tung, J. C. et al. Exploring the self-mode locking and vortex structures of nonplanar elliptical modes in selectively end-pumped Nd:YVO4 lasers: manifestation of large fractional orbital angular momentum. Opt. Express 25, 22769-22779 (2017). doi: 10.1364/OE.25.022769
[188] Huang, K. et al. Controlled generation of ultrafast vector vortex beams from a mode-locked fiber laser. Opt. Lett. 43, 3933-3936 (2018). doi: 10.1364/OL.43.003933
[189] Bolze, T. & Nuernberger, P. Temporally shaped Laguerre-Gaussian femtosecond laser beams. Appl. Opt. 57, 3624-3628 (2018). doi: 10.1364/AO.57.003624
[190] Zhuang, W. Z. et al. High-power high-repetition-rate subpicosecond monolithic Yb:KGW laser with self-mode locking. Opt. Lett. 38, 2596-2599 (2013). doi: 10.1364/OL.38.002596
[191] Chang, M. T. et al. Exploring transverse pattern formation in a dual-polarization self-mode-locked monolithic Yb: KGW laser and generating a 25-GHz sub-picosecond vortex beam via gain competition. Opt. Express 24, 8754-8762 (2016). doi: 10.1364/OE.24.008754
[192] Zhang, Z. M. et al. Generation of all-fiber femtosecond vortex laser based on NPR mode-locking and mechanical LPG. Chin. Opt. Lett. 16, 110501 (2018). doi: 10.3788/COL201816.110501
[193] Wang, S. et al. Direct emission of chirality controllable femtosecond LG01 vortex beam. Appl. Phys. Lett. 112, 201110 (2018). doi: 10.1063/1.5028477
[194] Wang, S. et al. Direct generation of femtosecond vortex beam from a Yb:KYW oscillator featuring a defect-spot mirror. OSA Contin. 2, 523-530 (2019). doi: 10.1364/OSAC.2.000523
[195] Woerdemann, M. et al. Advanced optical trapping by complex beam shaping. Laser Photonics Rev. 7, 839-854 (2013). doi: 10.1002/lpor.201200058
[196] Li, X. F. et al. Automultiscopic displays based on orbital angular momentum of light. J. Opt. 18, 085608 (2016). doi: 10.1088/2040-8978/18/8/085608
[197] Anguita, J. A., Herreros, J. & Djordjevic, I. B. Coherent multimode OAM superpositions for multidimensional modulation. IEEE Photonics J. 6, 7900811 (2014).
[198] Padgett, M. et al. An experiment to observe the intensity and phase structure of Laguerre-Gaussian laser modes. Am. J. Phys. 64, 77-82 (1996). doi: 10.1119/1.18283
[199] Courtial, J. & Padgett, M. J. Performance of a cylindrical lens mode converter for producing Laguerre-Gaussian laser modes. Opt. Commun. 159, 13-18 (1999). doi: 10.1016/S0030-4018(98)00599-9
[200] O'Neil, A. T. & Courtial, J. Mode transformations in terms of the constituent Hermite-Gaussian or Laguerre-Gaussian modes and the variable-phase mode converter. Opt. Commun. 181, 35-45 (2000). doi: 10.1016/S0030-4018(00)00736-7
[201] Padgett, M. J. & Allen, L. Orbital angular momentum exchange in cylindrical-lens mode converters. J. Opt. B Quantum Semiclassical Opt. 4, S17-S19 (2002). doi: 10.1088/1464-4266/4/2/362
[202] Shen, Y. J. et al. Observation of spectral modulation coupled with broadband transverse-mode-locking in an Yb:CALGO frequency-degenerate cavity. Chin. Opt. Lett. 17, 031404 (2019). doi: 10.3788/COL201917.031404
[203] Shen, Y. J. et al. Vortex lattices with transverse-mode-locking states switching in a large-aperture off-axis-pumped solid-state laser. J. Opt. Soc. Am. B 35, 2940-2944 (2018). doi: 10.1364/JOSAB.35.002940
[204] Shen, Y. J. et al. Periodic-trajectory-controlled, coherent-state-phase-switched, and wavelength-tunable SU(2) geometric modes in a frequency-degenerate resonator. Appl. Opt. 57, 9543-9549 (2018). doi: 10.1364/AO.57.009543
[205] Ngcobo, S. et al. A digital laser for on-demand laser modes. Nat. Commun. 4, 2289 (2013). doi: 10.1038/ncomms3289
[206] Porfirev, A. P. & Khonina, S. N. Simple method for efficient reconfigurable optical vortex beam splitting. Opt. Express 25, 18722-18735 (2017). doi: 10.1364/OE.25.018722
[207] Ma, H. X. et al. Generation of circular optical vortex array. Ann. Phys. 529, 1700285 (2017). doi: 10.1002/andp.201700285
[208] Li, L. et al. Generation of optical vortex array along arbitrary curvilinear arrangement. Opt. Express 26, 9798-9812 (2018). doi: 10.1364/OE.26.009798
[209] Wan, Z. S. et al. Quadrant-separable multi-singularity vortices manipulation by coherent superposed mode with spatial-energy mismatch. Opt. Express 26, 34940-34955 (2018). doi: 10.1364/OE.26.034940
[210] Hou, T. Y. et al. Spatially-distributed orbital angular momentum beam array generation based on greedy algorithms and coherent combining technology. Opt. Express 26, 14945-14958 (2018). doi: 10.1364/OE.26.014945
[211] Gbur, G. Fractional vortex Hilbert's hotel. Optica 3, 222-225 (2016). doi: 10.1364/OPTICA.3.000222
[212] Wang, Y. Y. D. & Gbur, G. Hilbert's Hotel in polarization singularities. Opt. Lett. 42, 5154-5157 (2017). doi: 10.1364/OL.42.005154
[213] Ferrando, A. & García-March, M. A. Analytical solution for multi-singular vortex Gaussian beams: the mathematical theory of scattering modes. J. Opt. 18, 064006 (2016). doi: 10.1088/2040-8978/18/6/064006
[214] Brasselet, E. Tunable optical vortex arrays from a single nematic topological defect. Phys. Rev. Lett. 108, 087801 (2012). doi: 10.1103/PhysRevLett.108.087801
[215] Barboza, R. et al. Harnessing optical vortex lattices in nematic liquid crystals. Phys. Rev. Lett. 111, 093902 (2013). doi: 10.1103/PhysRevLett.111.093902
[216] Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156-159 (1970). doi: 10.1103/PhysRevLett.24.156
[217] Padgett, M. & Bowman, R. Tweezers with a twist. Nat. Photonics 5, 343-348 (2011). doi: 10.1038/nphoton.2011.81
[218] Chapin, S. C., Germain, V. & Dufresne, E. R. Automated trapping, assembly, and sorting with holographic optical tweezers. Opt. Express 14, 13095-13100 (2006). doi: 10.1364/OE.14.013095
[219] Tao, S. H. et al. Fractional optical vortex beam induced rotation of particles. Opt. Express 13, 7726-7731 (2005). doi: 10.1364/OPEX.13.007726
[220] Gong, L. et al. Optical forces of focused femtosecond laser pulses on nonlinear optical Rayleigh particles. Photonics Res. 6, 138-143 (2018). doi: 10.1364/PRJ.6.000138
[221] Zhang, Y. Q. et al. Nonlinearity-induced multiplexed optical trapping and manipulation with femtosecond vector beams. Nano Lett. 18, 5538-5543 (2018). doi: 10.1021/acs.nanolett.8b01929
[222] Shen, Z. et al. Visualizing orbital angular momentum of plasmonic vortices. Opt. Lett. 37, 4627-4629 (2012). doi: 10.1364/OL.37.004627
[223] Zhang, Y. Q. et al. A plasmonic spanner for metal particle manipulation. Sci. Rep. 5, 15446 (2015). doi: 10.1038/srep15446
[224] Richardson, D. J., Fini, J. M. & Nelson, L. E. Space-division multiplexing in optical fibres. Nat. Photonics 7, 354-362 (2013). doi: 10.1038/nphoton.2013.94
[225] Wang, J. Advances in communications using optical vortices. Photonics Res. 4, B14-B28 (2016). doi: 10.1364/PRJ.4.000B14
[226] Willner, A. E. et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photonics 7, 66-106 (2015). doi: 10.1364/AOP.7.000066
[227] Lavery, M. P. J. et al. Free-space propagation of high-dimensional structured optical fields in an urban environment. Sci. Adv. 3, e1700552 (2017). doi: 10.1126/sciadv.1700552
[228] Li, L. et al. High-capacity free-space optical communications between a ground transmitter and a ground receiver via a UAV using multiplexing of multiple orbital-angular-momentum beams. Sci. Rep. 7, 17427 (2017). doi: 10.1038/s41598-017-17580-y
[229] Yan, Y. et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat. Commun. 5, 4876 (2014). doi: 10.1038/ncomms5876
[230] Jia, P. et al. Sidelobe-modulated optical vortices for free-space communication. Opt. Lett. 38, 588-590 (2013). doi: 10.1364/OL.38.000588
[231] Anguita, J. A., Herreros, J. & Cisternas, J. E. Generation and detection of multiple coaxial vortex beams for free-space optical communications. In Proc. Quantum Electronics and Laser Science Conference. (Optical Society of America, San Jose, California, United States, 2012).
[232] Heng, X. B. et al. All-fiber stable orbital angular momentum beam generation and propagation. Opt. Express 26, 17429-17436 (2018). doi: 10.1364/OE.26.017429
[233] Xie, Z. W. et al. Integrated (de)multiplexer for orbital angular momentum fiber communication. Photonics Res. 6, 743-749 (2018). doi: 10.1364/PRJ.6.000743
[234] Lei, T. et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light Sci. Appl. 4, e257 (2015). doi: 10.1038/lsa.2015.30
[235] Ren, Y. X. et al. Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications. Sci. Rep. 6, 33306 (2016). doi: 10.1038/srep33306
[236] D'Ambrosio, V. et al. Complete experimental toolbox for alignment-free quantum communication. Nat. Commun. 3, 961 (2012). doi: 10.1038/ncomms1951
[237] Zhu, L. et al. Orbital angular momentum mode groups multiplexing transmission over 2.6-km conventional multi-mode fiber. Opt. Express 25, 25637-25645 (2017). doi: 10.1364/OE.25.025637
[238] Mafu, M. et al. Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. Phys. Rev. A 88, 032305 (2013). doi: 10.1103/PhysRevA.88.032305
[239] Sit, A. et al. High-dimensional intracity quantum cryptography with structured photons. Optica 4, 1006-1010 (2017). doi: 10.1364/OPTICA.4.001006
[240] Nicolas, A. et al. A quantum memory for orbital angular momentum photonic qubits. Nat. Photonics 8, 234-238 (2014). doi: 10.1038/nphoton.2013.355
[241] Ding, D. S. et al. Quantum storage of orbital angular momentum entanglement in an atomic ensemble. Phys. Rev. Lett. 114, 050502 (2015). doi: 10.1103/PhysRevLett.114.050502
[242] Zhou, Z. Q. et al. Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal. Phys. Rev. Lett. 115, 070502 (2015). doi: 10.1103/PhysRevLett.115.070502
[243] Chen, L. X., Lei, J. J. & Romero, J. Quantum digital spiral imaging. Light Sci. Appl. 3, e153 (2014). doi: 10.1038/lsa.2014.34
[244] Nagali, E. et al. Optimal quantum cloning of orbital angular momentum photon qubits through Hong-Ou-Mandel coalescence. Nat. Photonics 3, 720-723 (2009). doi: 10.1038/nphoton.2009.214
[245] Ndagano, B. et al. Creation and detection of vector vortex modes for classical and quantum communication. J. Lightwave Technol. 36, 292-301 (2018). doi: 10.1109/JLT.2017.2766760
[246] Wang, X. L. et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516-519 (2015). doi: 10.1038/nature14246
[247] Wang, X. L. et al. 18-qubit entanglement with six photons' three degrees of freedom. Phys. Rev. Lett. 120, 260502 (2018). doi: 10.1103/PhysRevLett.120.260502
[248] Toninelli, E. et al. Concepts in quantum state tomography and classical implementation with intense light: a tutorial. Adv. Opt. Photonics 11, 67-134 (2019). doi: 10.1364/AOP.11.000067
[249] Sephton, B. et al. A versatile quantum walk resonator with bright classical light. PLoS ONE 14, e0214891 (2019). doi: 10.1371/journal.pone.0214891
[250] Ndagano, B. et al. Characterizing quantum channels with non-separable states of classical light. Nat. Phys. 13, 397-402 (2017). doi: 10.1038/nphys4003
[251] Vieira, J. et al. Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering. Nat. Commun. 7, 10371 (2016). doi: 10.1038/ncomms10371
[252] Lenzini, F. et al. Optical vortex interaction and generation via nonlinear wave mixing. Phys. Rev. A 84, 061801 (2011). doi: 10.1103/PhysRevA.84.061801
[253] Jiang, W. et al. Computation of topological charges of optical vortices via nondegenerate four-wave mixing. Phys. Rev. A 74, 043811 (2006). doi: 10.1103/PhysRevA.74.043811
[254] Li, G. X. et al. Continuous control of the nonlinearity phase for harmonic generations. Nat. Mater. 14, 607-612 (2015). doi: 10.1038/nmat4267
[255] Tymchenko, M. et al. Gradient nonlinear Pancharatnam-Berry metasurfaces. Phys. Rev. Lett. 115, 207403 (2015). doi: 10.1103/PhysRevLett.115.207403
[256] Keren-Zur, S. et al. Nonlinear beam shaping with plasmonic metasurfaces. ACS Photonics 3, 117-123 (2015).
[257] Li, G. X., Zentgraf, T. & Zhang, S. Rotational Doppler effect in nonlinear optics. Nat. Phys. 12, 736-740 (2016). doi: 10.1038/nphys3699
[258] Musarra, G. et al. Rotation-dependent nonlinear absorption of orbital angular momentum beams in ruby. Opt. Lett. 43, 3073-3075 (2018). doi: 10.1364/OL.43.003073
[259] Qiu, C. W. & Yang, Y. J. Vortex generation reaches a new plateau. Science 357, 645 (2017). doi: 10.1126/science.aan6359
[260] Toda, Y. et al. Single orbital angular mode emission from externally feed-backed vertical cavity surface emitting laser. Appl. Phys. Lett. 111, 101102 (2017). doi: 10.1063/1.4989479
[261] Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464-467 (2016). doi: 10.1126/science.aaf8533
[262] Wang, J. Metasurfaces enabling structured light manipulation: advances and perspectives[Invited]. Chin. Opt. Lett. 16, 050006 (2018). doi: 10.3788/COL201816.050006
[263] Huang, L. L. et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett. 12, 5750-5755 (2012). doi: 10.1021/nl303031j
[264] Sun, Y. Z. et al. Vector beam generation via micrometer-scale photonic integrated circuits and plasmonic Nano-antennae. J. Opt. Soc. Am. B 33, 360-366 (2016). doi: 10.1364/JOSAB.33.000360
[265] Chen, P. et al. Digitalizing self-assembled chiral superstructures for optical vortex processing. Adv. Mater. 30, 1705865 (2018). doi: 10.1002/adma.201705865
[266] Chen, Y. et al. Mapping twisted light into and out of a photonic chip. Phys. Rev. Lett. 121, 233602 (2018). doi: 10.1103/PhysRevLett.121.233602
[267] Jin, Y. et al. Dynamic modulation of spatially structured polarization fields for real-time control of ultrafast laser-material interactions. Opt. Express 21, 25333-25343 (2013). doi: 10.1364/OE.21.025333
[268] Allegre, O. J. et al. Complete wavefront and polarization control for ultrashort-pulse laser microprocessing. Opt. Express 21, 21198-21207 (2013). doi: 10.1364/OE.21.021198
[269] Toyoda, K. et al. Transfer of light helicity to nanostructures. Phys. Rev. Lett. 110, 143603 (2013). doi: 10.1103/PhysRevLett.110.143603
[270] Syubaev, S. et al. Direct laser printing of chiral plasmonic nanojets by vortex beams. Opt. Express 25, 10214-10223 (2017). doi: 10.1364/OE.25.010214
[271] Masuda, K. et al. Azo-polymer film twisted to form a helical surface relief by illumination with a circularly polarized Gaussian beam. Opt. Express 25, 12499-12507 (2017). doi: 10.1364/OE.25.012499
[272] Takahashi, F. et al. Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle. Sci. Rep. 6, 21738 (2016). doi: 10.1038/srep21738
[273] Torner, L., Torres, J. P. & Carrasco, S. Digital spiral imaging. Opt. Express 13, 873-881 (2005). doi: 10.1364/OPEX.13.000873
[274] Tan, P. S. et al. High-resolution wide-field standing-wave surface plasmon resonance fluorescence microscopy with optical vortices. Appl. Phys. Lett. 97, 241109 (2010). doi: 10.1063/1.3525173
[275] Zhang, C. L. et al. Perfect optical vortex enhanced surface plasmon excitation for plasmonic structured illumination microscopy imaging. Appl. Phys. Lett. 108, 201601 (2016). doi: 10.1063/1.4948249
[276] Xie, X. S. et al. Harnessing the point-spread function for high-resolution far-field optical microscopy. Phys. Rev. Lett. 113, 263901 (2014). doi: 10.1103/PhysRevLett.113.263901
[277] Wei, S. B. et al. Sub-100nm resolution PSIM by utilizing modified optical vortices with fractional topological charges for precise phase shifting. Opt. Express 23, 30143-30148 (2015). doi: 10.1364/OE.23.030143
[278] Kozawa, Y., Matsunaga, D. & Sato, S. Superresolution imaging via superoscillation focusing of a radially polarized beam. Optica 5, 86-92 (2018). doi: 10.1364/OPTICA.5.000086
[279] Willig, K. I. et al. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440, 935-939 (2006). doi: 10.1038/nature04592
[280] Wang, S. B. & Chan, C. T. Lateral optical force on chiral particles near a surface. Nat. Commun. 5, 3307 (2014). doi: 10.1038/ncomms4307
[281] Brullot, W. et al. Resolving enantiomers using the optical angular momentum of twisted light. Sci. Adv. 2, e1501349 (2016). doi: 10.1126/sciadv.1501349
[282] Zhao, Y. et al. Chirality detection of enantiomers using twisted optical metamaterials. Nat. Commun. 8, 14180 (2017). doi: 10.1038/ncomms14180
[283] Jeffries, G. D. M. et al. Using polarization-shaped optical vortex traps for single-cell nanosurgery. Nano Lett. 7, 415-420 (2007). doi: 10.1021/nl0626784
[284] Stellinga, D. et al. An organic vortex laser. ACS Nano 12, 2389-2394 (2018). doi: 10.1021/acsnano.7b07703
[285] Lavery, M. P. J. et al. Detection of a spinning object using light's orbital angular momentum. Science 341, 537-540 (2013). doi: 10.1126/science.1239936
[286] Cvijetic, N. et al. Detecting lateral motion using light's orbital angular momentum. Sci. Rep. 5, 15422 (2015). doi: 10.1038/srep15422
[287] Kravets, V. G. et al. Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. Nat. Mater. 12, 304-309 (2013). doi: 10.1038/nmat3537
[288] Xie, G. D. et al. Using a complex optical orbital-angular-momentum spectrum to measure object parameters. Opt. Lett. 42, 4482-4485 (2017). doi: 10.1364/OL.42.004482
[289] Fu, S. Y. & Gao, C. Q. Influences of atmospheric turbulence effects on the orbital angular momentum spectra of vortex beams. Photonics Res. 4, B1-B4 (2016). doi: 10.1364/PRJ.4.0000B1
[290] Li, Y., Yu, L. & Zhang, Y. X. Influence of anisotropic turbulence on the orbital angular momentum modes of Hermite-Gaussian vortex beam in the ocean. Opt. Express 25, 12203-12215 (2017). doi: 10.1364/OE.25.012203
[291] Min, C. J. et al. Plasmonic nano-slits assisted polarization selective detour phase meta-hologram. Laser Photonics Rev. 10, 978-985 (2016). doi: 10.1002/lpor.201600101
[292] Xie, Z. W. et al. On-chip spin-controlled orbital angular momentum directional coupling. J. Phys. D Appl. Phys. 51, 014002 (2017).
[293] Zhang, C. & Ma, L. Detecting the orbital angular momentum of electro-magnetic waves using virtual rotational antenna. Sci. Rep. 7, 4585 (2017). doi: 10.1038/s41598-017-04313-4
[294] Mei, S. T. et al. On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits. Nanoscale 8, 2227-2233 (2016). doi: 10.1039/C5NR07374J
[295] Foo, G., Palacios, D. M. & Swartzlander, G. A. Optical vortex coronagraph. Opt. Lett. 30, 3308-3310 (2005). doi: 10.1364/OL.30.003308
[296] Lee, J. H. et al. Experimental verification of an optical vortex coronagraph. Phys. Rev. Lett. 97, 053901 (2006). doi: 10.1103/PhysRevLett.97.053901
[297] Swartzlander, G. A. et al. Astronomical demonstration of an optical vortex coronagraph. Opt. Express 16, 10200-10207 (2008). doi: 10.1364/OE.16.010200
[298] Mawet, D. et al. Annular groove phase mask coronagraph. Astrophys. J. 633, 1191-1200 (2005). doi: 10.1086/462409
[299] Absil, O. et al. Three years of harvest with the vector vortex coronagraph in the thermal infrared. In Proc. SPIE 9908, Ground-based and Airborne Instrumentation for Astronomy VI. 99080Q (SPIE, Edinburgh, United Kingdom, 2016).
[300] Aleksanyan, A., Kravets, N. & Brasselet, E. Multiple-star system adaptive vortex coronagraphy using a liquid crystal light valve. Phys. Rev. Lett. 118, 203902 (2017). doi: 10.1103/PhysRevLett.118.203902
[301] Aleksanyan, A. & Brasselet, E. High-charge and multiple-star vortex coronagraphy from stacked vector vortex phase masks. Opt. Lett. 43, 383-386 (2018). doi: 10.1364/OL.43.000383
[302] Tamburini, F. et al. Twisting of light around rotating black holes. Nat. Phys. 7, 195-197 (2011). doi: 10.1038/nphys1907
[303] Battersby, S. Twisting the light away. New Sci. 182, 36-40 (2004).
[304] Yin, J. Y. et al. Microwave vortex-beam emitter based on spoof surface plasmon polaritons. Laser Photonics Rev. 12, 1600316 (2018). doi: 10.1002/lpor.201600316
[305] Marzo, A., Caleap, M. & Drinkwater, B. W. Acoustic virtual vortices with tunable orbital angular momentum for trapping of Mie particles. Phys. Rev. Lett. 120, 044301 (2018). doi: 10.1103/PhysRevLett.120.044301
[306] Bialynicki-Birula, I. & Charzyński, S. Trapping and guiding bodies by gravitational waves endowed with angular momentum. Phys. Rev. Lett. 121, 171101 (2018). doi: 10.1103/PhysRevLett.121.171101