[1] |
Guerboukha, H., Nallappan, K. & Skorobogatiy, M. Toward real-time terahertz imaging. Advances in Optics and Photonics 10, 843-938 (2018). doi: 10.1364/AOP.10.000843 |
[2] |
Stantchev, R. I. et al. Compressed sensing with near- field THz radiation. Optica 4, 989 (2017). doi: 10.1364/OPTICA.4.000989 |
[3] |
Cecconi, V. et al. Terahertz spatiotemporal wave synthesis in random systems. ACS Photonics 11, 362-368 (2024). |
[4] |
Leontyev, A. A. et al. Direct measurement of the correlation function of optical–terahertz biphotons. JETP Letters 114, 565-571 (2021). doi: 10.1134/S0021364021220082 |
[5] |
Leibov, L. et al. Speckle patterns formed by broadband terahertz radiation and their applications for ghost imaging. Scientific Reports 11, 20071 (2021). doi: 10.1038/s41598-021-99508-1 |
[6] |
Kuznetsov, K. A. et al. Topological insulator films for terahertz photonics. Nanomaterials 12, 3779 (2022). doi: 10.3390/nano12213779 |
[7] |
Petrov, N. V. et al. Design of broadband terahertz vector and vortex beams: I. review of materials and components. Light: Advanced Manufacturing 3, 640-652 (2022). |
[8] |
Petrov, N. V. et al. Design of broadband terahertz vector and vortex beams: II. holographic assessment. Light: Advanced Manufacturing 3, 44 (2022). |
[9] |
Katyba, G. M. et al. Tunable THz flat zone plate based on stretchable single-walled carbon nanotube thin film. Optica 10, 53-61 (2023). doi: 10.1364/OPTICA.475385 |
[10] |
Koch, M. et al. Terahertz time-domain spectroscopy. Nature Reviews Methods Primers 3, 48 (2023). doi: 10.1038/s43586-023-00232-z |
[11] |
Li, X. et al. High-throughput terahertz imaging: progress and challenges. Light: Science & Applications 12, 233 (2023). |
[12] |
Guo, X. et al. Terahertz nanoscopy: Advances, challenges, and the road ahead. Applied Physics Reviews 11, 021306 (2024). doi: 10.1063/5.0189061 |
[13] |
Radivon, A. V. et al. Expanding THz vortex generation functionality with advanced spiral zone plates based on single-walled carbon nanotube films. Advanced Optical Materials 12, 2303282 (2024). doi: 10.1002/adom.202303282 |
[14] |
Zhelnov, V. A. et al. Hemispherical rutile solid immersion lens for terahertz microscopy with superior 0.06–0.11λ resolution. Advanced Optical Materials 12, 2300927 (2024). |
[15] |
Stoik, C. D., Bohn, M. J. & Blackshire, J. L. Nondestructive evaluation of aircraft composites us- ing transmissive terahertz time domain spectroscopy. Optics Express 16, 17039-17051 (2008). doi: 10.1364/OE.16.017039 |
[16] |
Zhang, J. -Y. et al. THz imaging technique for nondestructive analysis of debonding defects in ceramic matrix composites based on multiple echoes and feature fusion. Optics Express 28, 19901-19915 (2020). |
[17] |
True, J. et al. Review of THz-based semiconductor assurance. Optical Engineering 60, 060901 (2021). |
[18] |
Huber, A. J. et al. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano Letters 8, 3766-3770 (2008). doi: 10.1021/nl802086x |
[19] |
Buron, J. D. et al. Graphene conductance uniformity mapping. Nano Letters 12, 5074-5081 (2012). doi: 10.1021/nl301551a |
[20] |
Zeitler, J. A. et al. Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting – a review. Journal of Pharmacy and Pharmacology 59, 209-223 (2007). doi: 10.1211/jpp.59.2.0008 |
[21] |
Afsah-Hejri, L. et al. A comprehensive review on food applications of terahertz spectroscopy and imaging. Comprehensive Reviews in Food Science and Food Safety 18, 1563-1621 (2019). doi: 10.1111/1541-4337.12490 |
[22] |
Kawase, K. et al. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Optics Express 11, 2549-2554 (2003). doi: 10.1364/OE.11.002549 |
[23] |
Dolganova, I. N. et al. A hybrid continuous- wave terahertz imaging system. Review of Scientific Instruments 86, 113704 (2015). doi: 10.1063/1.4935495 |
[24] |
Dolganova, I. N. et al. The role of scattering in quasi- ordered structures for terahertz imaging: Local order can increase an image quality. IEEE Transactions on Terahertz Science and Technology 8, 403-409 (2018). doi: 10.1109/TTHZ.2018.2844104 |
[25] |
Zaytsev, K. I. et al. The progress and perspectives of terahertz technology for diagnosis of neoplasms: a review. Journal of Optics 22, 013001 (2020). doi: 10.1088/2040-8986/ab4dc3 |
[26] |
Lindley-Hatcher, H. et al. Real time THz imaging—opportunities and challenges for skin cancer detection. Applied Physics Letters 118, 230501 (2021). doi: 10.1063/5.0055259 |
[27] |
Chernomyrdin, N. V. et al. Terahertz technology in intraoperative neurodiagnostics: A review. Opto- Electronic Advances 6, 220071 (2023). doi: 10.29026/oea.2023.220071 |
[28] |
Doradla, P., Joseph, C. & Giles, R. Terahertz endoscopic imaging for colorectal cancer detection: Current status and future perspectives. World journal of gastrointestinal endoscopy 9, 346-358 (2017). doi: 10.4253/wjge.v9.i8.346 |
[29] |
Li, H. et al. High-sensitivity THz-ATR imaging of cerebral ischemia in a rat model. Biomedical Optics Express 15, 3743 (2024). doi: 10.1364/BOE.524466 |
[30] |
Png, G. M. et al. Terahertz spectroscopy of snap-frozen human brain tissue: an initial study. Electronics Letters 45, 343-345 (2009). doi: 10.1049/el.2009.3413 |
[31] |
Shi, L. et al. Terahertz spectroscopy of brain tissue from a mouse model of Alzheimer’s disease. Journal of Biomedical Optics 21, 015014 (2016). doi: 10.1117/1.JBO.21.1.015014 |
[32] |
Zou, Y. et al. Terahertz spectroscopic diagnosis of myelin deficit brain in mice and rhesus monkey with chemometric techniques. Scientific Reports 7, 5176 (2017). doi: 10.1038/s41598-017-05554-z |
[33] |
Zhao, H. et al. High-sensitivity terahertz imaging of traumatic brain injury in a rat model. Journal of Biomedical Optics 23, 036015 (2018). |
[34] |
Wang, Y. et al. Terahertz spectroscopic diagnosis of early blast-induced traumatic brain injury in rats. Biomedical Optics Express 11, 4085-4098 (2020). doi: 10.1364/BOE.395432 |
[35] |
Arbab, M. H. et al. Terahertz spectroscopy for the assessment of burn injuries in vivo. Journal of Biomedical Optics 18, 077004 (2013). doi: 10.1117/1.JBO.18.7.077004 |
[36] |
Bennett, D. B. et al. Terahertz sensing in corneal tissues. Journal of Biomedical Optics 16, 057003 (2011). doi: 10.1117/1.3575168 |
[37] |
Iomdina, E. N. et al. Study of transmittance and reflectance spectra of the cornea and the sclera in the THz frequency range. Journal of Biomedical Optics 21, 097002 (2016). doi: 10.1117/1.JBO.21.9.097002 |
[38] |
Ozheredov, I. et al. Potential clinical applications of terahertz reflectometry for the assessment of the tear film stability. Optical Engineering 59, 061622 (2020). |
[39] |
Iomdina, E. N. et al. Terahertz scanning of the rabbit cornea with experimental UVB-induced damage: in vivo assessment of hydration and its verification. Journal of Biomedical Optics 26, 043010 (2021). |
[40] |
Crawley, D. A. et al. Terahertz pulse imaging: A pilot study of potential applications in dentistry. Caries Research 37, 352-359 (2003). doi: 10.1159/000072167 |
[41] |
Pickwell, E. et al. A comparison of terahertz pulsed imaging with transmission microradiography for depth measurement of enamel demineralisation in vitro. Caries Research 41, 49-55 (2007). doi: 10.1159/000096105 |
[42] |
Hernandez-Cardoso, G. G. et al. Terahertz imaging demonstrates its diagnostic potential and reveals a relationship between cutaneous dehydration and neuropathy for diabetic foot syndrome patients. Scientific Reports 12, 3110 (2022). doi: 10.1038/s41598-022-06996-w |
[43] |
Hernandez-Cardoso, G. G. et al. Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept. Scientific Reports 7, 42124 (2017). doi: 10.1038/srep42124 |
[44] |
Cherkasova, O., Nazarov, M. & Shkurinov, A. Noninvasive blood glucose monitoring in the terahertz frequency range. Optical & Quantum Electronics 48, 217 (2016). |
[45] |
Smolyanskaya, O. A. et al. Multimodal optical diagnostics of glycated biological tissues. Biochemistry (Moscow) 84, 12-143 (2019). |
[46] |
Smolyanskaya, O. A. et al. Glycerol dehydration of native and diabetic animal tissues studied by THz- TDS and NMR methods. Biomedical Optics Express 9, 1198-1215 (2018). doi: 10.1364/BOE.9.001198 |
[47] |
Hernandez-Serrano, A. I. et al. Terahertz probe for real time in vivo skin hydration evaluation. Advanced Photonics Nexus 3, 016012 (2024). |
[48] |
Bajwa, N. et al. Non-invasive terahertz imaging of tissue water content for flap viability assessment. Biomedical Optics Express 8, 460-474 (2016). |
[49] |
Wang, J. et al. Evaluation of transdermal drug delivery using terahertz pulsed imaging. Biomedical Optics Express 11, 4484-4490 (2020). doi: 10.1364/BOE.394436 |
[50] |
Barker, X. E. R. et al. Monitoring the terahertz response of skin beneath transdermal drug delivery patches using sparse deconvolution. IEEE Transactions on Terahertz Science and Technology 13, 503-510 (2023). doi: 10.1109/TTHZ.2023.3292546 |
[51] |
Cherkasova, O. P. et al. Cellular effects of terahertz waves. Journal of Biomedical Optics 26, 090902 (2021). |
[52] |
Titova, L. V. et al. Intense THz pulses down-regulate genes associated with skin cancer and psoriasis: a new therapeutic avenue? Scientific Reports 3, 2363 (2013). |
[53] |
Keiser, G. et al. Review of diverse optical fibers used in biomedical research and clinical practice. Journal of Biomedical Optics 19, 080902 (2014). doi: 10.1117/1.JBO.19.8.080902 |
[54] |
Yang, L. et al. Development of a small-diameter and high-resolution industrial endoscope with CMOS image sensor. Sensors and Actuators A: Physical 296, 17-23 (2019). doi: 10.1016/j.sna.2019.04.026 |
[55] |
Liu, Y. et al. Nanopatterned evanescent-field fiber- optic interferometer as a versatile platform for gas sensing. Sensors and Actuators B: Chemical 301, 127136 (2019). doi: 10.1016/j.snb.2019.127136 |
[56] |
Chen, H. et al. Review and perspective: Sapphire optical fiber cladding development for harsh environment sensing. Applied Physics Reviews 5, 011102 (2018). doi: 10.1063/1.5010184 |
[57] |
Islam, M. S. et al. Terahertz optical fibers [Invited]. Optics Express 28, 16089-16117 (2020). doi: 10.1364/OE.389999 |
[58] |
Katyba, G. M. et al. Sapphire waveguides and fibers for terahertz applications. Progress in Crystal Growth and Characterization of Materials 67, 100523 (2021). doi: 10.1016/j.pcrysgrow.2021.100523 |
[59] |
Smolyanskaya, O. A. et al. Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids. Progress in Quantum Electronics 62, 1-77 (2018). doi: 10.1016/j.pquantelec.2018.10.001 |
[60] |
Yan, Z. et al. THz medical imaging: from in vitro to in vivo. Trends in Biotechnology 40, 816-830 (2022). doi: 10.1016/j.tibtech.2021.12.002 |
[61] |
Møller, U. et al. Terahertz reflection spectroscopy of debye relaxation in polar liquids [Invited]. Journal of the Optical Society of America B 26, A113-A125 (2009). doi: 10.1364/JOSAB.26.00A113 |
[62] |
Pickwell, E. et al. Simulation of terahertz pulse propagation in biological systems. Applied Physics Letters 84, 2190-2192 (2004). doi: 10.1063/1.1688448 |
[63] |
Chernomyrdin, N. V. et al. Reflection-mode continuous-wave 0.15λ-resolution terahertz solid immersion microscopy of soft biological tissues. Applied Physics Letters 113, 111102 (2018). |
[64] |
Chernomyrdin, N. V. et al. Quantitative super- resolution solid immersion microscopy via refractive index profile reconstruction. Optica 8, 1471-1480 (2021). doi: 10.1364/OPTICA.439286 |
[65] |
Hu, X. et al. Terahertz s-SNOM imaging of a single cell with nanoscale resolution. Nano Letters 24, 7757-7763 (2024). doi: 10.1021/acs.nanolett.4c01868 |
[66] |
Pizzuto, A. , Ma, P. & Mittleman, D. M. Near-field terahertz nonlinear optics with blue light. Light: Science & Applications 12, 96 (2023). |
[67] |
Yan, S. et al. Terahertz scanning near-field optical microscopy for biomedical detection: Recent advances, challenges, and future perspectives. Biotechnology Advances 79, 108507 (2025). doi: 10.1016/j.biotechadv.2024.108507 |
[68] |
Kucheryavenko, A. S. et al. Terahertz-wave scattering in tissues: Examining the limits of the applicability of effective-medium theory. Physical Review Applied 20, 054050 (2023). doi: 10.1103/PhysRevApplied.20.054050 |
[69] |
Joseph, C. S. et al. Imaging of ex vivo nonmelanoma skin cancers in the optical and terahertz spectral regions. optical and terahertz skin cancers imaging. Journal of Biophotonics 7, 295-303 (2014). |
[70] |
Yaroslavsky, A. et al. Delineating nonmelanoma skin cancer margins using terahertz and optical imaging. Journal of Biomedical Photonics & Engineering 3, 010301 (2017). |
[71] |
Xu, K. & Arbab, M. H. Terahertz polarimetric imaging of biological tissue: Monte Carlo modeling of signal contrast mechanisms due to Mie scattering. Biomedical Optics Express 15, 2328-2342 (2024). doi: 10.1364/BOE.515623 |
[72] |
Chernomyrdin, N. V. et al. Quantitative polarization- sensitive super-resolution solid immersion microscopy reveals biological tissues’ birefringence in the terahertz range. Scientific Reports 13, 16596 (2023). doi: 10.1038/s41598-023-43857-6 |
[73] |
Gavdush, A. A. et al. Terahertz dielectric spectroscopy of human brain gliomas and intact tissues ex vivo: double-debye and double-overdamped- oscillator models of dielectric response. Biomedical Optics Express 12, 69-83 (2021). doi: 10.1364/BOE.411025 |
[74] |
Ke, J. et al. Clinical and experimental study of a terahertz time-domain system for the determination of the pathological margins of laryngeal carcinoma. World Journal of Surgical Oncology 20, 339 (2022). doi: 10.1186/s12957-022-02788-8 |
[75] |
Ji, Y. B. et al. Terahertz reflectometry imaging for low and high grade gliomas. Scientific Reports 6, 36040 (2016). doi: 10.1038/srep36040 |
[76] |
Sim, Y. C. et al. Terahertz imaging of excised oral cancer at frozen temperature. Biomedical Optics Express 4, 1413 (2013). doi: 10.1364/BOE.4.001413 |
[77] |
Cassar, Q. et al. Terahertz refractive index- based morphological dilation for breast carcinoma delineation. Scientific Reports 11, 6457 (2021). doi: 10.1038/s41598-021-85853-8 |
[78] |
Wallace, V. P. et al. Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo. British Journal of Dermatology 151, 424-432 (2004). doi: 10.1111/j.1365-2133.2004.06129.x |
[79] |
Wahaia, F. et al. Terahertz spectroscopy and imaging for gastric cancer diagnosis. Journal of Spectral Imaging 9, a2 (2020). |
[80] |
Rong, L. et al. Terahertz in-line digital holography of human hepatocellular carcinoma tissue. Scientific Reports 5, 8445 (2015). doi: 10.1038/srep08445 |
[81] |
Doradla, P. et al. Detection of colon cancer by continuous-wave terahertz polarization imaging technique. Journal of Biomedical Optics 18, 090504 (2013). doi: 10.1117/1.JBO.18.9.090504 |
[82] |
Zhang, P. et al. Application of terahertz spectroscopy and imaging in the diagnosis of prostate cancer. Current Optics and Photonics 4, 31-43 (2020). |
[83] |
Zaytsev, K. I. et al. Highly accurate in vivo terahertz spectroscopy of healthy skin: Variation of refractive index and absorption coefficient along the human body. IEEE Transactions on Terahertz Science and Technology 5, 817-827 (2015). doi: 10.1109/TTHZ.2015.2460677 |
[84] |
Woodward, R. M. et al. Terahertz pulse imaging of ex vivo basal cell carcinoma. Journal of Investigative Dermatology 120, 72-78 (2003). doi: 10.1046/j.1523-1747.2003.12013.x |
[85] |
Colao, B. & Khachemoune, A. Mohs micrographic surgery challenges and new technologies to optimize care of cutaneous malignancies of the ear. Archives of Dermatological Research 316, 320 (2024). doi: 10.1007/s00403-024-03127-5 |
[86] |
Zaytsev, K. I. et al. In vivo terahertz spectroscopy of pigmentary skin nevi: Pilot study of non-invasive early diagnosis of dysplasia. Applied Physics Letters 106, 053702 (2015). doi: 10.1063/1.4907350 |
[87] |
Zaitsev, K. I. et al. Terahertz spectroscopy of pigmentary skin nevi in vivo. Optics and Spectroscopy 119, 404-410 (2015). doi: 10.1134/S0030400X1509026X |
[88] |
Arumi-Uria, M., McNutt, N. S. & Finnerty, B. Grading of atypia in nevi: Correlation with melanoma risk. Modern Pathology 16, 764-771 (2003). doi: 10.1097/01.MP.0000082394.91761.E5 |
[89] |
Barnhill, R. L. et al. Predicting five-year outcome for patients with cutaneous melanoma in a population- based study. Cancer 78, 427-432 (1996). doi: 10.1002/(SICI)1097-0142(19960801)78:3<427::AID-CNCR8>3.0.CO;2-G |
[90] |
Li, J., Xie, Y. & Sun, P. Edge detection on terahertz pulse imaging of dehydrated cutaneous malignant melanoma embedded in paraffin. Frontiers of Optoelectronics 12, 317-323 (2019). doi: 10.1007/s12200-019-0861-1 |
[91] |
Li, D. et al. Detecting melanoma with a terahertz spectroscopy imaging technique. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 234, 118229 (2020). doi: 10.1016/j.saa.2020.118229 |
[92] |
Peralta, X. G. et al. Terahertz spectroscopy of human skin tissue models with different melanin content. Biomedical Optics Express 10, 2942-2955 (2019). doi: 10.1364/BOE.10.002942 |
[93] |
Ji, Y. B. et al. Investigation of Keratinizing Squamous Cell Carcinoma of the Tongue Using Terahertz Reflection Imaging. Journal of Infrared, Millimeter, and Terahertz Waves 40, 247-256 (2019). doi: 10.1007/s10762-018-0562-7 |
[94] |
Sim, Y. C. et al. Temperature-dependent terahertz imaging of excised oral malignant melanoma. IEEE Journal of Biomedical and Health Informatics 17, 779-784 (2013). doi: 10.1109/JBHI.2013.2252357 |
[95] |
Wahaia, F. et al. Study of paraffin-embedded colon cancer tissue using terahertz spectroscopy. Journal of Molecular Structure 1079, 448-453 (2015). doi: 10.1016/j.molstruc.2014.09.024 |
[96] |
Shi, H. et al. Early detection of gastric cancer via high-resolution terahertz imaging system. Frontiers in Bioengineering and Biotechnology 10, 1052069 (2022). doi: 10.3389/fbioe.2022.1052069 |
[97] |
Miura, Y. et al. Terahertz-wave spectroscopy for precise histopathological imaging of tumor and non- tumor lesions in paraffin sections. The Tohoku Journal of Experimental Medicine 223, 291-296 (2011). doi: 10.1620/tjem.223.291 |
[98] |
Wahaia, F. et al. Detection of colon cancer by terahertz techniques. Journal of Molecular Structure 1006, 77-82 (2011). doi: 10.1016/j.molstruc.2011.05.049 |
[99] |
Reid, C. B. et al. Terahertz pulsed imaging of freshly excised human colonic tissues. Physics in Medicine and Biology 56, 4333-4353 (2011). doi: 10.1088/0031-9155/56/14/008 |
[100] |
Fitzgerald, A. J. et al. Terahertz pulsed imaging of human breast tumors. Radiology 239, 533-540 (2006). doi: 10.1148/radiol.2392041315 |
[101] |
Ashworth, P. C. et al. Terahertz pulsed spectroscopy of freshly excised human breast cancer. Optics Express 17, 12444-12454 (2009). doi: 10.1364/OE.17.012444 |
[102] |
Okada, K. et al. Terahertz near-field microscopy of ductal carcinoma in situ (DCIS) of the breast. Journal of Physics: Photonics 2, 044008 (2020). doi: 10.1088/2515-7647/abbcda |
[103] |
Vohra, N. et al. Hyperspectral terahertz imaging and optical clearance for cancer classification in breast tumor surgical specimen. Journal of Medical Imaging 9, 014002 (2022). |
[104] |
Tuchin, V. V. Tissue optics: Light scattering methods and instruments for medical diagnostics. 3rd edn. (Bellingham: SPIE Press, 2015). |
[105] |
Tuchin, V. V. , Zhu, D. & Genina, E. A. Handbook of Tissue Optical Clearing. New Prospects in Optical Imaging (Boca Raton: CRC Press, 2022). |
[106] |
Musina, G. R. et al. Optimal hyperosmotic agents for tissue immersion optical clearing in terahertz biophotonics. Journal of Biophotonics 13, e202000297 (2020). doi: 10.1002/jbio.202000297 |
[107] |
Musina, G. R. et al. Prospects of terahertz technology in diagnosis of human brain tumors – A review. Journal of Biomedical Photonics & Engineering 6, 020201 (2020). |
[108] |
Gavdush, A. A. et al. Terahertz spectroscopy of gelatin-embedded human brain gliomas of different grades: a road toward intraoperative THz diagnosis. Journal of Biomedical Optics 24, 027001 (2019). |
[109] |
Kucheryavenko, A. S. et al. Terahertz dielectric spectroscopy and solid immersion microscopy of ex vivo glioma model 101.8: brain tissue heterogeneity. Biomedical Optics Express 12, 5272-5289 (2021). |
[110] |
Mu, N. et al. Molecular pathological recognition of freshly excised human glioma using terahertz atr spectroscopy. Biomedical Optics Express 13, 222-236 (2022). doi: 10.1364/BOE.445111 |
[111] |
Li, H. et al. The spatial distribution of renal fibrosis investigated by micro-probe terahertz spectroscopy system. Diagnostics 12, 1602 (2022). doi: 10.3390/diagnostics12071602 |
[112] |
Peng, Y. et al. Three-step one-way model in terahertz biomedical detection. PhotoniX 2, 12 (2021). doi: 10.1186/s43074-021-00034-0 |
[113] |
Globus, T. et al. Sub-terahertz vibrational spectroscopy of ovarian cancer and normal control tissue for molecular diagnostic technology. Cancer Biomarkers 24, 405-419 (2019). doi: 10.3233/CBM-182120 |
[114] |
Knyazkova, A. I. et al. Paraffin-embedded prostate cancer tissue grading using terahertz spectroscopy and machine learning. Journal of Infrared, Millimeter, and Terahertz Waves 41, 1089-1104 (2020). doi: 10.1007/s10762-020-00673-7 |
[115] |
Formanek, F. , Brun, M. -A. & Yasuda, A. Contrast improvement of terahertz images of thin histopathologic sections. Biomedical Optics Express 2, 58-64 (2011). |
[116] |
Zhao, J., Zhang, L. & Liang, H. Advances in Metasurface-Based Terahertz Sensing. Advanced Physics Research 3, 2400077 (2024). doi: 10.1002/apxr.202400077 |
[117] |
Wu, Y. et al. Emerging probing perspective of two- dimensional materials physics: terahertz emission spectroscopy. Light: Science & Applications 13, 146 (2024). |
[118] |
Hamza, M. N. & Islam, M. T. Designing an extremely tiny dual-band biosensor based on MTMs in the terahertz region as a perfect absorber for non-melanoma skin cancer diagnostics. IEEE Access 11, 136770-136781 (2023). doi: 10.1109/ACCESS.2023.3339562 |
[119] |
Tripathy, S. K. et al. A miniaturized dual band terahertz metamaterial-based absorber as a biosensor for non-melanoma skin cancer diognostic. Optik 316, зам172048 (2024). doi: 10.1016/j.ijleo.2024.172048 |
[120] |
Lou, J. et al. Calibration-free, high-precision, and robust terahertz ultrafast metasurfaces for monitoring gastric cancers. Proceedings of the National Academy of Sciences 119, e2209218119 (2022). doi: 10.1073/pnas.2209218119 |
[121] |
Vafapour, Z., Troy, W. & Rashidi, A. Colon cancer detection by designing and analytical evaluation of a water-based THz metamaterial perfect absorber. IEEE Sensors Journal 21, 19307-19313 (2021). doi: 10.1109/JSEN.2021.3087953 |
[122] |
Park, S. J. et al. Design of a split ring resonator integrated with on-chip terahertz waveguides for colon cancer detection. Advanced Theory and Simulations 5, 2200313 (2022). doi: 10.1002/adts.202200313 |
[123] |
Geng, Z. et al. A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage. Scientific Reports 7, 16378 (2017). doi: 10.1038/s41598-017-16762-y |
[124] |
Mu, N. et al. Terahertz meta-biosensor for subtype detection and chemotherapy monitoring of glioma cells. Materials & Design 246, 113294 (2024). |
[125] |
Lee, S. -H. et al. Label-free brain tissue imaging using large-area terahertz metamaterials. Biosensors and Bioelectronics 170, 112663 (2020). |
[126] |
Tuchin, V. V. , Popp, J. & Zakharov, V. Multimodal Optical Diagnostics of Cancer (Cham: Springer, 2020). |
[127] |
Pickwell, E. et al. in vivo study of human skin using pulsed terahertz radiation. Physics in Medicine and Biology 49, 1595-1607 (2004). |
[128] |
Grootendorst, M. R. et al. Use of a handheld terahertz pulsed imaging device to differentiate benign and malignant breast tissue. Biomedical Optics Express 8, 2932 (2017). doi: 10.1364/BOE.8.002932 |
[129] |
Chen, Y., Huang, S. & Pickwell-MacPherson, E. Frequency-wavelet domain deconvolution for terahertz reflection imaging and spectroscopy. Optics Express 18, 1177-1190 (2010). doi: 10.1364/OE.18.001177 |
[130] |
Busch, S. et al. Terahertz transceiver concept. Optics Express 22, 16841-16846 (2014). doi: 10.1364/OE.22.016841 |
[131] |
Jepsen, P. U., Jacobsen, R. H. & Keiding, S. R. Generation and detection of terahertz pulses from biased semiconductor antennas. Journal of the Optical Society of America B 13, 2424-2436 (1996). doi: 10.1364/JOSAB.13.002424 |
[132] |
Lavrukhin, D. V. et al. Shaping the spectrum of terahertz photoconductive antenna by frequency- dependent impedance modulation. Semiconductor Science and Technology 34, 034005 (2019). doi: 10.1088/1361-6641/aaff31 |
[133] |
Gorodetsky, A. et al. Enhanced THz generation from interdigitated quantum dot based photoconductive antenna operating in a quasi-ballistic regime. IEEE Journal of Selected Topics in Quantum Electronics 29, 8500505 (2023). |
[134] |
Zenchenko, N. V. et al. Enhanced terahertz emission in a large-area photoconductive antenna through an array of tightly packed sapphire fibers. Applied Physics Letters 124, 121107 (2024). doi: 10.1063/5.0194236 |
[135] |
Sy, S. et al. Terahertz spectroscopy of liver cirrhosis: investigating the origin of contrast. Physics in Medicine and Biology 55, 7587-7596 (2010). doi: 10.1088/0031-9155/55/24/013 |
[136] |
Ashworth, P. C. et al. An intra-operative THz probe for use during the surgical removal of breast tumors. In 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves. Pasadena, CA, USA: IEEE, 2008, 1–3. |
[137] |
Ji, Y. B. et al. A miniaturized fiber-coupled terahertz endoscope system. Optics Express 17, 17082-17087 (2009). doi: 10.1364/OE.17.017082 |
[138] |
Han, S. -P. et al. Compact fiber-pigtailed InGaAs photoconductive antenna module for terahertz-wave generation and detection. Optics Express 20, 18432-18439 (2012). |
[139] |
Molter, D. et al. Hand-held miniature terahertz time-domain attenuated total reflection spectroscopy module. Terahertz Science and Technology 12, 69-76 (2019). |
[140] |
Dong, J. et al. Terahertz frequency-wavelet domain deconvolution for stratigraphic and subsurface investigation of art painting. Optics Express 24, 26972-26985 (2016). doi: 10.1364/OE.24.026972 |
[141] |
Nellen, S. et al. Miniaturized continuous-wave tera- hertz spectrometer with 3.6 THz bandwidth enabled by photonic integration and microelectronics. IEEE Access 12, 35246-35256 (2024). |
[142] |
Hernandez-Serrano, A. I. et al. Terahertz probe for real time in vivo skin hydration evaluation. Advanced Photonics Nexus 3, 016012 (2024). |
[143] |
Bark, H. S. et al. Optical fiber coupled THz transceiver. 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). Hong Kong, China: IEEE, 2015, 1-2 . |
[144] |
J¨ordens, C. et al. Fibre-coupled terahertz transceiver head. Electronics Letters 44, 1473-1475 (2008). doi: 10.1049/el:20083017 |
[145] |
Globisch, B. et al. Fiber-coupled transceiver for terahertz reflection measurements with a 4.5 THz bandwidth. Optics Letters 41, 5262 (2016). |
[146] |
Sawallich, S. et al. Photoconductive terahertz near- field detectors for operation with 1550-nm pulsed fiber lasers. IEEE Transactions on Terahertz Science and Technology 6, 365-370 (2016). doi: 10.1109/TTHZ.2016.2549365 |
[147] |
Li, Z. et al. Single cell imaging with near-field terahertz scanning microscopy. Cell Proliferation 53, e12788 (2020). doi: 10.1111/cpr.12788 |
[148] |
Atakaramians, S. et al. Terahertz dielectric waveguides. Advances in Optics and Photonics 5, 169-215 (2013). doi: 10.1364/AOP.5.000169 |
[149] |
Andrews, S. R. Microstructured terahertz waveguides. Journal of Physics D: Applied Physics 47, 374004 (2014). doi: 10.1088/0022-3727/47/37/374004 |
[150] |
Ferreira, M. F. S. et al. Roadmap on specialty optical fibers. Journal of Physics: Photonics 7, 012501 (2025). doi: 10.1088/2515-7647/ad6b19 |
[151] |
Lerouge, S. & Simmons, A. Sterilisation of Biomaterials and Medical Devices. Woodhead Publishing Series in Biomaterials (Cambridge: Woodhead Publishing, 2012). |
[152] |
Van de Roer, T. G. Transmission lines and microwave circuits. In Microwave Electronic Devices (New York: Springer, 1994). |
[153] |
Gallot, G. et al. Terahertz waveguides. Journal of the Optical Society of America B 17, 851-863 (2000). doi: 10.1364/JOSAB.17.000851 |
[154] |
Melinger, J. S. et al. Guided-wave terahertz spectroscopy of molecular solids [Invited]. Journal of the Optical Society of America B 26, A79-A89 (2009). doi: 10.1364/JOSAB.26.000A79 |
[155] |
Bowden, B., Harrington, J. A. & Mitrofanov, O. Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings. Journal of Applied Physics 104, 093110 (2008). doi: 10.1063/1.3013445 |
[156] |
Chen, B. et al. A low-loss hollow-core waveguide bundle for terahertz imaging under a cryogenic environment. ACS Photonics 11, 3068-3078 (2024). doi: 10.1021/acsphotonics.4c00310 |
[157] |
Dong, J. et al. Versatile metal-wire waveguides for broadband terahertz signal processing and multiplexing. Nature Communications 13, 741 (2022). doi: 10.1038/s41467-022-27993-7 |
[158] |
Tuniz, A. et al. Metamaterial fibres for sub diffraction imaging and focusing at terahertz frequencies over optically long distances. Nature communications 4, 2706 (2013). doi: 10.1038/ncomms3706 |
[159] |
Xu, G. et al. Infinity additive manufacturing of continuous microstructured fiber links for THz communications. Scientific Reports 12, 4551 (2022). doi: 10.1038/s41598-022-08334-6 |
[160] |
Katyba, G. M. et al. Superresolution imaging using a tapered bundle of high-refractive-index optical fibers. Physical Review Applied 18, 034069 (2022). doi: 10.1103/PhysRevApplied.18.034069 |
[161] |
Katyba, G. M. et al. Terahertz refractometry of hard-to-access objects using the sapphire endoscope suitable for harsh environments. Applied Physics Letters 124, 243703 (2024). doi: 10.1063/5.0207898 |
[162] |
Nazarov, Maxim et al. Polymer waveguides for THz QCL radiation delivery and filtering. EPJ Web of Conferences 195, 04005 (2018). doi: 10.1051/epjconf/201819504005 |
[163] |
Katyba, G. M. et al. Sapphire photonic crystal waveguides for terahertz sensing in aggressive environments. Advanced Optical Materials 6, 1800573 (2018). doi: 10.1002/adom.201800573 |
[164] |
Ma, T. et al. 3D printed hollow-core terahertz optical waveguides with hyperuniform disordered dielectric reflectors. Advanced Optical Materials 4, 2085-2094 (2016). |
[165] |
Harrington, J. A. et al. Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation. Optics Express 12, 5263 (2004). doi: 10.1364/OPEX.12.005263 |
[166] |
Wallis, R. et al. Investigation of hollow cylindrical metal terahertz waveguides suitable for cryogenic environments. Optics Express 24, 30002 (2016). doi: 10.1364/OE.24.030002 |
[167] |
Ushakov, D. V. et al. Feasibility of GaAs/AlGaAs quantum cascade laser operating above 6 THz. Journal of Applied Physics 135, 133108 (2024). doi: 10.1063/5.0198236 |
[168] |
Antonov, P. I. & Kurlov, V. N. A review of developments in shaped crystal growth of sapphire by the Stepanov and related techniques. Progress in Crystal Growth and Characterization of Materials 44, 63-122 (2002). doi: 10.1016/S0960-8974(02)00005-0 |
[169] |
Katyba, G. M. et al. Sapphire shaped crystals for waveguiding, sensing and exposure applications. Progress in Crystal Growth and Characterization of Materials 64, 133-151 (2018). doi: 10.1016/j.pcrysgrow.2018.10.002 |
[170] |
Zaytsev, K. I. et al. Overcoming the Abbe diffraction limit using a bundle of metal-coated high-refractive- index sapphire optical fibers. Advanced Optical Materials 8, 2000307 (2020). doi: 10.1002/adom.202000307 |
[171] |
Wang, K. & Mittleman, D. M. Metal wires for terahertz wave guiding. Nature 432, 376-379 (2004). doi: 10.1038/nature03040 |
[172] |
Deibel, J. A. et al. Enhanced coupling of terahertz radiation to cylindrical wire waveguides. Optics Express 14, 279-290 (2006). doi: 10.1364/OPEX.14.000279 |
[173] |
Wang, K. & Mittleman, D. M. Guided propagation of terahertz pulses on metal wires. Journal of the Optical Society of America B 22, 2001-2008 (2005). doi: 10.1364/JOSAB.22.002001 |
[174] |
Cai, J. et al. Coupling and propagation of strong- field THz waves on tungsten wires. Applied Physics Letters 126, 051103 (2025). doi: 10.1063/5.0252779 |
[175] |
Mbonye, M., Mendis, R. & Mittleman, D. M. A terahertz two-wire waveguide with low bending loss. Applied Physics Letters 95, 233506 (2009). doi: 10.1063/1.3268790 |
[176] |
Pahlevaninezhad, H. & Darcie, T. E. Coupling of terahertz waves to a two-wire waveguide. Optics Express 18, 22614-22624 (2010). doi: 10.1364/OE.18.022614 |
[177] |
Markov, A., Guerboukha, H. & Skorobogatiy, M. Hybrid metal wire–dielectric terahertz waveguides: challenges and opportunities [Invited]. Journal of the Optical Society of America B 31, 2587-2600 (2014). doi: 10.1364/JOSAB.31.002587 |
[178] |
Cao, Y. et al. Additive manufacturing of highly reconfigurable plasmonic circuits for terahertz communications. Optica 7, 1112-1125 (2020). doi: 10.1364/OPTICA.398572 |
[179] |
Yan, G. et al. Low-loss terahertz waveguide bragg grating using a two-wire waveguide and a paper grating. Optics Letters 38, 3089-3092 (2013). doi: 10.1364/OL.38.003089 |
[180] |
Mridha, M. K. et al. Active terahertz two-wire waveguides. Optics Express 22, 22340-22348 (2014). doi: 10.1364/OE.22.022340 |
[181] |
Simovski, C. R. et al. Wire metamaterials: Physics and applications. Advanced Materials 24, 4229-4248 (2012). doi: 10.1002/adma.201200931 |
[182] |
Tuniz, A. et al. Drawn metamaterials with plasmonic response at terahertz frequencies. Applied Physics Letters 96, 191101 (2010). doi: 10.1063/1.3428576 |
[183] |
Habib, M. S. et al. A prism based magnifying hyperlens with broad-band imaging. Applied Physics Letters 110, 101106 (2017). doi: 10.1063/1.4978445 |
[184] |
Jamison, S. P., McGowan, R. W. & Grischkowsky, D. Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers. Applied Physics Letters 76, 1987-1989 (2000). doi: 10.1063/1.126231 |
[185] |
Chen, L. -J. et al. Low-loss subwavelength plastic fiber for terahertz waveguiding. Optics Letters 31, 308-310 (2006). |
[186] |
Katyba, G. M. et al. Terahertz transmission-mode scanning-probe near-field optical microscopy based on a flexible step-index sapphire fiber. Optical Engineering 60, 082010 (2021). |
[187] |
Hassani, A., Dupuis, A. & Skorobogatiy, M. Porous polymer fibers for low-loss terahertz guiding. Optics Express 16, 6340-6351 (2008). doi: 10.1364/OE.16.006340 |
[188] |
Guerboukha, H. et al. Silk foam terahertz waveguides. Advanced Optical Materials 2, 1181-1192 (2014). doi: 10.1002/adom.201400228 |
[189] |
Nallappan, K. et al. Dispersion-limited versus power- limited terahertz communication links using solid core subwavelength dielectric fibers. Photonics Research 8, 1757-1775 (2020). doi: 10.1364/PRJ.396433 |
[190] |
Ma, T. et al. Graded index porous optical fibers – dispersion management in terahertz range. Optics Express 23, 7856-7869 (2015). doi: 10.1364/OE.23.007856 |
[191] |
Atakaramians, S. et al. THz porous fibers: design, fabrication and experimental characterization. Optics Express 17, 14053-14062 (2009). doi: 10.1364/OE.17.014053 |
[192] |
Lu, J. -Y. et al. Terahertz scanning imaging with a subwavelength plastic fiber. Applied Physics Letters 92, 084102 (2008). |
[193] |
Komorowski, P. et al. Subwavelength imaging in sub- THz range using dielectric waveguide. Sensors 25, 336 (2025). doi: 10.3390/s25020336 |
[194] |
Minin, I. V. et al. Experimental observation of a photonic hook. Applied Physics Letters 114, 031105 (2019). doi: 10.1063/1.5065899 |
[195] |
Yue, L. et al. Photonic hook: a new curved light beam. Optics Letters 43, 771-774 (2018). doi: 10.1364/OL.43.000771 |
[196] |
Chen, H. et al. The diagnosis of human liver cancer by using THz fiber-scanning near-field imaging. Chinese Physics Letters 30, 030702 (2013). doi: 10.1088/0256-307X/30/3/030702 |
[197] |
Chen, H. et al. Performance of THz fiber-scanning near-field microscopy to diagnose breast tumors. Optics Express 19, 19523-19531 (2011). doi: 10.1364/OE.19.019523 |
[198] |
Chen, H. et al. High-sensitivity in vivo THz transmission imaging of early human breast cancer in a subcutaneous xenograft mouse model. Optics Express 19, 21552-21562 (2011). doi: 10.1364/OE.19.021552 |
[199] |
Duguay, M. A. et al. Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures. Applied Physics Letters 49, 13-15 (1986). doi: 10.1063/1.97085 |
[200] |
Archambault, J. -L. et al. Loss calculations for antiresonant waveguides. Journal of Lightwave Technology 11, 416-423 (1993). |
[201] |
Katyba, G. M. et al. THz generation by two-color laser air plasma coupled to antiresonance hollow- core sapphire waveguides: THz-wave delivery and angular distribution management. Optics Express 30, 4215-4230 (2022). doi: 10.1364/OE.447060 |
[202] |
Yin, D. et al. Integrated arrow waveguides with hollow cores. Optics Express 12, 2710-2715 (2004). doi: 10.1364/OPEX.12.002710 |
[203] |
Nazarov, M. M. et al. Eight-capillary cladding THz waveguide with low propagation losses and dispersion. IEEE Transactions on Terahertz Science and Technology 8, 183-191 (2018). doi: 10.1109/TTHZ.2017.2786030 |
[204] |
Xue, L. et al. 3D-printed high-birefringence THz hollow-core anti-resonant fiber with an elliptical core. Optics Express 31, 26178-26193 (2023). |
[205] |
Li, L. et al. Investigation on low-loss hollow-core anti-resonant terahertz fiber. Appliep Optics 62, 5778-5785 (2023). doi: 10.1364/AO.489623 |
[206] |
Dong, Z. et al. Research on anti-resonant terahertz hollow waveguides with cascaded bridges. Optics Communications 546, 129747 (2023). doi: 10.1016/j.optcom.2023.129747 |
[207] |
Nazarov, M. et al. A flexible terahertz waveguide for delivery and filtering of quantum-cascade laser radiation. Applied Physics Letters 113, 131107 (2018). doi: 10.1063/1.5040306 |
[208] |
Li, J. et al. 3D printed hollow core terahertz Bragg waveguides with defect layers for surface sensing applications. Optics Express 25, 4126-4144 (2017). |
[209] |
Skorobogatiy, M. & Dupuis, A. Ferroelectric all- polymer hollow bragg fibers for terahertz guidance. Applied Physics Letters 90, 113514 (2007). doi: 10.1063/1.2713137 |
[210] |
Dupuis, A. et al. Transmission measurements of hollow-core THz Bragg fibers. Journal of the Optical Society of America B 28, 896 (2011). doi: 10.1364/JOSAB.28.000896 |
[211] |
Bai, T. T. et al. Design and investigation of terahertz hollow-core Bragg waveguide with axial periodic bridges. Optical Engineering 60, 086105 (2021). |
[212] |
Vincetti, L. Hollow core photonic band gap fibers for THz applications. Microwave and Optical Technology Letters 51, 1711-1714 (2009). doi: 10.1002/mop.24407 |
[213] |
Ren, G. et al. Polarization maintaining air-core bandgap fibers for terahertz wave guiding. IEEE Journal of Quantum Electronics 45, 506-513 (2009). doi: 10.1109/JQE.2009.2013099 |
[214] |
Nielsen, K. et al. Porous-core honeycomb bandgap THz fiber. Optics Letters 36, 666-668 (2011). doi: 10.1364/OL.36.000666 |
[215] |
Nielsen, K. et al. Bendable, low-loss Topas fibers for the terahertz frequency range. Optics Express 17, 8592-8601 (2009). doi: 10.1364/OE.17.008592 |
[216] |
Zaytsev, K. I. et al. Terahertz photonic crystal waveguides based on sapphire shaped crystals. IEEE Transactions on Terahertz Science and Technology 6, 576-582 (2016). doi: 10.1109/TTHZ.2016.2555981 |
[217] |
Kucheryavenko, A. S. et al. Super-resolution THz endoscope based on a hollow-core sapphire waveguide and a solid immersion lens. Optics Express 31, 13366-13373 (2023). doi: 10.1364/OE.484650 |
[218] |
Doradla, P. et al. Single-channel prototype terahertz endoscopic system. Journal of Biomedical Optics 19, 080501 (2014). doi: 10.1117/1.JBO.19.8.080501 |
[219] |
You, B. & Lu, J. -Y. Remote and in situ sensing products in chemical reaction using a flexible terahertz pipe waveguide. Optics Express 24, 18013-18023 (2016). |
[220] |
Ito, K., Katagiri, T. & Matsuura, Y. Analysis of transmission properties of terahertz hollow-core optical fiber by using time-domain spectroscopy and application for remote spectroscopy. Journal of the Optical Society of America B 34, 60-65 (2017). doi: 10.1364/JOSAB.34.000060 |
[221] |
Gorshunov, B. et al. Terahertz BWO-spectrosopy. International Journal of Infrared and Millimeter Waves 26, 1217-1240 (2005). doi: 10.1007/s10762-005-7600-y |
[222] |
Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. (Cambridge: Cambridge University Press, 1999). |
[223] |
Ponomarev, D. S. et al. Boosting photoconductive large-area THz emitter via optical light confinement behind a highly refractive sapphire-fiber lens. Optics Letters 47, 1899-1902 (2022). doi: 10.1364/OL.452192 |
[224] |
Ponomarev, D. S. et al. Enhanced THz radiation through a thick plasmonic electrode grating photoconductive antenna with tight photocarrier confinement. Optics Letters 48, 1220-1223 (2023). doi: 10.1364/OL.486431 |
[225] |
Yachmenev, A. E., Khabibullin, R. A. & Ponomarev, D. S. Recent advances in THz detectors based on semiconductor structures with quantum confinement: a review. Journal of Physics D: Applied Physics 55, 193001 (2022). doi: 10.1088/1361-6463/ac43dd |
[226] |
Yachmenev, A. E. et al. Metallic and dielectric metasurfaces in photoconductive terahertz devices: a review. Optical Engineering 59, 061608 (2019). |
[227] |
Lavrukhin, D. V. et al. Strain-induced InGaAs-based photoconductive terahertz antenna detector. IEEE Transactions on Terahertz Science and Technology 11, 417-424 (2021). doi: 10.1109/TTHZ.2021.3079977 |