[1] Maier, S. A. Plasmonics: Fundamentals And Applications (Springer, 2007).
[2] GarciaVidal, F. J. & Pendry, J. B. Collective theory for surface enhanced Raman scattering. Phys. Rev. Lett. 77, 1163-1166 (1996). doi: 10.1103/PhysRevLett.77.1163
[3] Lin, K. Q. et al. Plasmonic photoluminescence for recovering native chemical information from surface-enhanced Raman scattering. Nat. Commun. 8, 14891 (2017). doi: 10.1038/ncomms14891
[4] Maier, S. A. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2, 229-232 (2003). doi: 10.1038/nmat852
[5] Sonnichsen, C., Reinhard, B. M., Liphardt, J. & Alivisatos, A. P. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol. 23, 741-745 (2005). doi: 10.1038/nbt1100
[6] Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442-453 (2008). doi: 10.1038/nmat2162
[7] Wu, X. et al. High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy. ACS Nano 4, 113-120 (2010). doi: 10.1021/nn901064m
[8] Tanaka, K., Plum, E., Ou, J. Y., Uchino, T. & Zheludev, N. I. Multifold enhancement of quantum dot luminescence in plasmonic metamaterials. Phys. Rev. Lett. 105, 227403 (2010). doi: 10.1103/PhysRevLett.105.227403
[9] Wang, Z. et al. Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures. Nat. Commun. 7, 11283 (2016). doi: 10.1038/ncomms11283
[10] Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110-U1168 (2009). doi: 10.1038/nature08318
[11] Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629-632 (2009). doi: 10.1038/nature08364
[12] Yang, A. K. et al. Real-time tunable lasing from plasmonic nanocavity arrays. Nat. Commun. 6, 6939 (2015). doi: 10.1038/ncomms7939
[13] Kumar, K. et al. Printing colour at the optical diffraction limit. Nat. Nanotechnol. 7, 557-561 (2012). doi: 10.1038/nnano.2012.128
[14] Guay, J. M. et al. Laser-induced plasmonic colours on metals. Nat. Commun. 8, 16095 (2017). doi: 10.1038/ncomms16095
[15] Tan, S. F. et al. Quantum plasmon resonances controlled by molecular tunnel junctions. Science 343, 1496-1499 (2014). doi: 10.1126/science.1248797
[16] Zheng, G. X. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308-312 (2015). doi: 10.1038/nnano.2015.2
[17] Huang, L. L. et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 2808 (2013). doi: 10.1038/ncomms3808
[18] Wang, S. M. et al. Broadband achromatic optical metasurface devices. Nat. Commun. 8, 187 (2017). doi: 10.1038/s41467-017-00166-7
[19] Mock, J. J., Barbic, M., Smith, D. R., Schultz, D. A. & Schultz, S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 116, 6755-6759 (2002). doi: 10.1063/1.1462610
[20] Kelly, K. L., Coronado, E., Zhao, L. L. & Schatz, G. C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668-677 (2003).
[21] Rechberger, W. et al. Optical properties of two interacting gold nanoparticles. Opt. Commun. 220, 137-141 (2003). doi: 10.1016/S0030-4018(03)01357-9
[22] Halas, N. J., Lal, S., Chang, W. S., Link, S. & Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111, 3913-3961 (2011). doi: 10.1021/cr200061k
[23] Gans, R. The state of ultramicroscopic silver particles. Ann. Phys. Berl. 47, 270-U214 (1915).
[24] Nordlander, P., Oubre, C., Prodan, E., Li, K. & Stockman, M. I. Plasmon hybridizaton in nanoparticle dimers. Nano Lett. 4, 899-903 (2004). doi: 10.1021/nl049681c
[25] Prodan, E., Radloff, C., Halas, N. J. & Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 302, 419-422 (2003). doi: 10.1126/science.1089171
[26] Jain, P. K. & El-Sayed, M. A. Plasmonic coupling in noble metal nanostructures. Chem. Phys. Lett. 487, 153-164 (2010). doi: 10.1016/j.cplett.2010.01.062
[27] Luk'yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707-715 (2010). doi: 10.1038/nmat2810
[28] Liu, N. et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater. 8, 758-762 (2009). doi: 10.1038/nmat2495
[29] Link, S. & Ei-Sayed, M. A. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem. 54, 331-366 (2003). doi: 10.1146/annurev.physchem.54.011002.103759
[30] Kim, S. et al. High-harmonic generation by resonant plasmon field enhancement. Nature 453, 757-760 (2008). doi: 10.1038/nature07012
[31] Tame, M. S. et al. Quantum plasmonics. Nat. Phys. 9, 329-340 (2013). doi: 10.1038/nphys2615
[32] Wan, W. J. et al. Time-reversed lasing and interferometric control of absorption. Science 331, 889-892 (2011). doi: 10.1126/science.1200735
[33] Roger, T. et al. Coherent perfect absorption in deeply subwavelength films in the single-photon regime. Nat. Commun. 6, 7031 (2015). doi: 10.1038/ncomms8031
[34] Zhang, J. F., MacDonald, K. F. & Zheludev, N. I. Controlling light-with-light without nonlinearity. Light Sci. Appl. 1, e18 (2012). doi: 10.1038/lsa.2012.18
[35] Fang, X., MacDonald, K. F. & Zheludev, N. I. Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor. Light Sci. Appl. 4, e292 (2015). doi: 10.1038/lsa.2015.65
[36] Xomalis, A. et al. Fibre-optic metadevice for all-optical signal modulation based on coherent absorption. Nat. Commun. 9, 182 (2018). doi: 10.1038/s41467-017-02434-y
[37] Fan, J. A. et al. Self-assembled plasmonic nanoparticle clusters. Science 328, 1135-1138 (2010). doi: 10.1126/science.1187949
[38] Knight, M. W., Fan, J., Capasso, F. & Halas, N. J. Influence of excitation and collection geometry on the dark field spectra of individual plasmonic nanostructures. Opt. Express 18, 2579-2587 (2010). doi: 10.1364/OE.18.002579
[39] Jiang, L. Y. et al. Accurate modeling of dark-field scattering spectra of plasmonic nano structures. ACS Nano 9, 10039-10046 (2015). doi: 10.1021/acsnano.5b03622
[40] Fan, J. A. et al. Near-normal incidence dark-field microscopy: applications to nanoplasmonic spectroscopy. Nano Lett. 12, 2817-2821 (2012). doi: 10.1021/nl300160y
[41] Kottmann, J. P. & Martin, O. J. F. Retardation-induced plasmon resonances in coupled nanoparticles. Opt. Lett. 26, 1096-1098 (2001). doi: 10.1364/OL.26.001096
[42] Maier, S. A. et al. Plasmonics - a route to nanoscale optical devices. Adv. Mater. 13, 1501-1505 (2001). doi: 10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z
[43] Jiang, L. Y. et al. Probing vertical and horizontal plasmonic resonant states in the photoluminescence of gold nanodisks. ACS Photonics 2, 1217-1223 (2015). doi: 10.1021/acsphotonics.5b00308
[44] Zhang, R. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82-86 (2013). doi: 10.1038/nature12151
[45] Coenen, T., Arango, F. B., Koenderink, A. F. & Polman, A. Directional emission from a single plasmonic scatterer. Nat. Commun. 5, 3250 (2014). doi: 10.1038/ncomms4250
[46] Dregely, D. et al. Imaging and steering an optical wireless nanoantenna link. Nat. Commun. 5, 4354 (2014). doi: 10.1038/ncomms5354
[47] Dong, Z. G., Bosman, M., Zhu, D., Goh, X. M. & Yang, J. K. W. Fabrication of suspended metal-dielectric-metal plasmonic nanostructures. Nanotechnology 25, 135303 (2014). doi: 10.1088/0957-4484/25/13/135303
[48] Dubrovkin, A. M. et al. Visible range plasmonic modes on topological insulator nanostructures. Adv. Opt. Mater. 5, 1600768 (2017). doi: 10.1002/adom.201600768
[49] Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370-4379 (1972). doi: 10.1103/PhysRevB.6.4370