[1] |
Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014). doi: 10.1038/nphoton.2014.248 |
[2] |
Khanikaev, A. B. & Shvets, G. Two-dimensional topological photonics. Nat. Photon. 11, 763–773 (2017). doi: 10.1038/s41566-017-0048-5 |
[3] |
Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019). doi: 10.1103/RevModPhys.91.015006 |
[4] |
Lu, L., Gao, H. Z. & Wang, Z. Topological one-way fiber of second Chern number. Nat. Commun. 9, 5384 (2018). doi: 10.1038/s41467-018-07817-3 |
[5] |
Pilozzi, L. et al. Topological photonic crystal fibers and ring resonators. Opt. Lett. 45, 1415–1418 (2020). doi: 10.1364/OL.387043 |
[6] |
Gao, X. M. et al. Dirac-vortex topological cavities. Nat. Nanotechnol. https://doi.org/10.1038/s41565-020-0773-7 (2020). |
[7] |
ackiw, R. & Rossi, P. Zero modes of the vortex-fermion system. Nucl. Phys. B 190, 681–691 (1981). doi: 10.1016/0550-3213(81)90044-4 |
[8] |
Hou, C. Y., Chamon, C. & Mudry, C. Electron fractionalization in two-dimensional graphenelike structures. Phys. Rev. Lett. 98, 186809 (2007). doi: 10.1103/PhysRevLett.98.186809 |
[9] |
Iadecola, T., Schuster, T. & Chamon, C. Non-abelian braiding of light. Phys. Rev. Lett. 117, 073901 (2016). doi: 10.1103/PhysRevLett.117.073901 |
[10] |
Menssen, A. J. et al. Photonic topological mode bound to a vortex. Phys. Rev. Lett. 125, 117401 (2020). doi: 10.1103/PhysRevLett.125.117401 |
[11] |
Noh, J. et al. Braiding photonic topological zero modes. Nat. Phys. 16, 989–993 (2020). doi: 10.1038/s41567-020-1007-5 |
[12] |
Gao, P. L. et al. Majorana-like zero modes in kekulé distorted sonic lattices. Phys. Rev. Lett. 123, 196601 (2019). doi: 10.1103/PhysRevLett.123.196601 |
[13] |
Chen, C. W. et al. Mechanical analogue of a Majorana bound state. Adv. Mater. 31, 1904386 (2019). doi: 10.1002/adma.201904386 |
[14] |
Okoshi, T. & Oyamada, K. Single-polarisation single-mode optical fibre with refractive-index pits on both sides of core. Electron. Lett. 16, 712–713 (1980). doi: 10.1049/el:19800505 |
[15] |
Eickhoff, W. Stress-induced single-polarization single-mode fiber. Opt. Lett. 7, 629–631 (1982). doi: 10.1364/OL.7.000629 |
[16] |
Simpson, J. et al. A single-polarization fiber. J. Lightwave Technol. 1, 370–374 (1983). doi: 10.1109/JLT.1983.1072129 |
[17] |
Kubota, H. et al. Absolutely single polarization photonic crystal fiber. IEEE Photon. Technol. Lett. 16, 182–184 (2004). doi: 10.1109/LPT.2003.819415 |
[18] |
Folkenberg, J. R., Nielsen, M. D. & Jakobsen, C. Broadband single-polarization photonic crystal fiber. Opt. Lett. 30, 1446–1448 (2005). doi: 10.1364/OL.30.001446 |
[19] |
Lee, K. K. Y., Avniel, Y. & Johnson, S. G. Design strategies and rigorous conditions for single-polarization single-mode waveguides. Opt. Express 16, 15170–15184 (2008). doi: 10.1364/OE.16.015170 |
[20] |
Ferrando, A. & Miret, J. J. Single-polarization single-mode intraband guidance in supersquare photonic crystals fibers. Appl. Phys. Lett. 78, 3184–3186 (2001). doi: 10.1063/1.1353837 |
[21] |
Eguchi, M. & Tsuji, Y. Single-polarization elliptical-hole lattice core photonic-bandgap fiber. J. Lightwave Technol. 31, 177–182 (2013). doi: 10.1109/JLT.2012.2226867 |
[22] |
Szpulak, M. et al. Single-polarization single-mode photonic band gap fiber. Acta Phys. Polonica A 111, 239–245 (2007). doi: 10.12693/APhysPolA.111.239 |
[23] |
Chiles, J. & Fathpour, S. Demonstration of ultra-broadband single-mode and single-polarization operation in T-guides. Opt. Lett. 41, 3836–3839 (2016). doi: 10.1364/OL.41.003836 |
[24] |
Bassett, I. M. & Argyros, A. Elimination of polarization degeneracy in round waveguides. Opt. Express 10, 1342–1346 (2002). doi: 10.1364/OE.10.001342 |
[25] |
Argyros, A. et al. Microstructured optical fiber for single-polarization air guidance. Opt. Lett. 29, 20–22 (2004). doi: 10.1364/OL.29.000020 |
[26] |
Knight, J. C. Photonic crystal fibres. Nature 424, 847–851 (2003). doi: 10.1038/nature01940 |
[27] |
Russell, P. S. J. Photonic-crystal fibers. J. Lightwave Technol. 24, 4729–4749 (2006). doi: 10.1109/JLT.2006.885258 |
[28] |
Xie, K. et al. Fiber guiding at the Dirac frequency beyond photonic bandgaps. Light.: Sci. Appl. 4, e304 (2015). doi: 10.1038/lsa.2015.77 |
[29] |
Biswas, T., Chattopadhyay, R. & Bhadra, S. K. Dirac-mode guidance in silica-based hollow-core photonic crystal fiber with high-index dielectric rings. Phys. Status Solidi (B) 253, 1898–1906 (2016). doi: 10.1002/pssb.201600195 |
[30] |
Lu, L. et al. Weyl points and line nodes in gyroid photonic crystals. Nat. Photon. 7, 294–299 (2013). doi: 10.1038/nphoton.2013.42 |
[31] |
Rechtsman, M. C. et al. Photonic floquet topological insulators. Nature 496, 196–200 (2013). doi: 10.1038/nature12066 |
[32] |
Noh, J. et al. Experimental observation of optical Weyl points and Fermi arc-like surface states. Nat. Phys. 13, 611–617 (2017). doi: 10.1038/nphys4072 |
[33] |
Wu, L. H. & Hu, X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, 223901 (2015). doi: 10.1103/PhysRevLett.114.223901 |
[34] |
Joannopoulos, J. D. et al. Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, NJ, 2008). |
[35] |
Heiblum, M. & Harris, J. Analysis of curved optical waveguides by conformal transformation. IEEE J. Quant. Electron. 11, 75–83 (1975). doi: 10.1109/JQE.1975.1068563 |
[36] |
Beravat, R. et al. Twist-induced guidance in coreless photonic crystal fiber: a helical channel for light. Sci. Adv. 2, e1601421 (2016). doi: 10.1126/sciadv.1601421 |
[37] |
Finazzi, V., Monro, T. M. & Richardson, D. J. Small-core silica holey fibers: nonlinearity and confinement loss trade-offs. J. Optical Soc. Am. B 20, 1427–1436 (2003). doi: 10.1364/JOSAB.20.001427 |
[38] |
Tsuchida, Y., Saitoh, K. & Koshiba, M. Design and characterization of single-mode holey fibers with low bending losses. Opt. Express 13, 4770–4779 (2005). doi: 10.1364/OPEX.13.004770 |
[39] |
Teo, J. C. Y. & Kane, C. L. Topological defects and gapless modes in insulators and superconductors. Phys. Rev. B 82, 115120 (2010). doi: 10.1103/PhysRevB.82.115120 |
[40] |
Yuan, L. Q. et al. Synthetic dimension in photonics. Optica 5, 1396–1405 (2018). doi: 10.1364/OPTICA.5.001396 |
[41] |
Makwana, M. et al. Hybrid topological guiding mechanisms for photonic crystal fibers. Opt. Express 28, 30871–30888 (2020). doi: 10.1364/OE.398559 |