[1] Hall, J. L. Nobel lecture: defining and measuring optical frequencies. Rev. Mod. Phys. 78, 1279-1295 (2006). doi: 10.1103/RevModPhys.78.1279
[2] Grelu, P. & Akhmediev, N. Dissipative solitons for mode-locked lasers. Nat. Photon. 6, 84-92 (2012). doi: 10.1038/nphoton.2011.345
[3] Liu, X., Yao, X. K. & Cui, Y. D. Real-time observation of the buildup of soliton molecules. Phys. Rev. Lett. 121, 023905 (2018). doi: 10.1103/PhysRevLett.121.023905
[4] Ryczkowski, P. et al. Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser. Nat. Photon. 12, 221-227 (2018). doi: 10.1038/s41566-018-0106-7
[5] Herink, G. et al. Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules. Science 356, 50-54 (2017). doi: 10.1126/science.aal5326
[6] Krupa, K. et al. Real-time observation of internal motion within ultrafast dissipative optical soliton molecules. Phys. Rev. Lett. 118, 243901 (2017). doi: 10.1103/PhysRevLett.118.243901
[7] Haus, H. A. et al. Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment. IEEE J. Quantum Electron. 31, 591-598 (1995). doi: 10.1109/3.364417
[8] Yu, T. et al. Dispersion-managed soliton interactions in optical fibers. Opt. Lett. 22, 793-795 (1997). doi: 10.1364/OL.22.000793
[9] Bale, B. G., Boscolo, S. & Turitsyn, S. K. Dissipative dispersion-managed solitons in mode-locked lasers. Opt. Lett. 34, 3286-3288 (2009). doi: 10.1364/OL.34.003286
[10] Kippenberg, T. J. et al. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018). doi: 10.1126/science.aan8083
[11] Yao, B. C. et al. Gate-tunable frequency combs in graphene-nitride microresonators. Nature 558, 410-414 (2018). doi: 10.1038/s41586-018-0216-x
[12] Pasquazi, A. et al. Micro-combs: a novel generation of optical sources. Phys. Rep. 729, 1-81 (2018). doi: 10.1016/j.physrep.2017.08.004
[13] Huang, S. W. et al. A low-phase-noise 18 GHz Kerr frequency microcomb phase-locked over 65 THz. Sci. Rep. 5, 13355 (2015). doi: 10.1038/srep13355
[14] Huang, S. W. et al. A broadband chip-scale optical frequency synthesizer at 2.7×10-16 relative uncertainty. Sci. Adv. 2, e1501489 (2016). doi: 10.1126/sciadv.1501489
[15] Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81-85 (2018). doi: 10.1038/s41586-018-0065-7
[16] Dutt, A. et al. On-chip dual-comb source for spectroscopy. Sci. Adv. 4, e1701858 (2018). doi: 10.1126/sciadv.1701858
[17] Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274-279 (2017). doi: 10.1038/nature22387
[18] Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887-891 (2018). doi: 10.1126/science.aao3924
[19] Suh, M. G. & Vahala, K. J. Soliton microcomb range measurement. Science 359, 884-887 (2018). doi: 10.1126/science.aao1968
[20] Jang, J. K. et al. Synchronization of coupled optical microresonators. Nat. Photon. 12, 688-693 (2018). doi: 10.1038/s41566-018-0261-x
[21] Lucas, E. et al. Spatial multiplexing of soliton microcombs. Nat. Photon. 12, 699-705 (2018). doi: 10.1038/s41566-018-0256-7
[22] Godey, C. et al. Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys. Rev. A 89, 063814 (2014). doi: 10.1103/PhysRevA.89.063814
[23] Coen, S. & Erkintalo, M. Universal scaling laws of Kerr frequency combs. Opt. Lett. 38, 1790-1792 (2013). doi: 10.1364/OL.38.001790
[24] Huang, S. W. et al. Globally stable microresonator Turing pattern formation for coherent high-power THz radiation on-chip. Phys. Rev. X 7, 041002 (2017). doi: 10.1103/PhysRevX.7.041002
[25] Runge, A. F. J., Broderick, N. G. R. & Erkintalo, M. Observation of soliton explosions in a passively mode-locked fiber laser. Optica 2, 36-39 (2015). doi: 10.1364/OPTICA.2.000036
[26] Herink, G. et al. Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate. Nat. Photon. 10, 321-326 (2016). doi: 10.1038/nphoton.2016.38
[27] Yu, Y. et al. Spectral-temporal dynamics of multipulse mode-locking. Appl. Phys. Lett. 110, 201107 (2017). doi: 10.1063/1.4983718
[28] Foster, M. A. et al. Silicon-chip-based ultrafast optical oscilloscope. Nature 456, 81-84 (2008). doi: 10.1038/nature07430
[29] Li, B. W. et al. Panoramic-reconstruction temporal imaging for seamless measurements of slowly-evolved femtosecond pulse dynamics. Nat. Commun. 8, 61 (2017). doi: 10.1038/s41467-017-00093-7
[30] Lucas, E. et al. Breathing dissipative solitons in optical microresonators. Nat. Commun. 8, 736 (2017). doi: 10.1038/s41467-017-00719-w
[31] Yi, X. et al. Imaging soliton dynamics in optical microcavities. Nat. Commun. 9, 3565 (2018). doi: 10.1038/s41467-018-06031-5
[32] Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145-152 (2014). doi: 10.1038/nphoton.2013.343
[33] Huang, S. W. et al. Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators. Phys. Rev. Lett. 114, 053901 (2015). doi: 10.1103/PhysRevLett.114.053901
[34] Xue, X. X. et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photon. 9, 594-600 (2015). doi: 10.1038/nphoton.2015.137
[35] Bao, C. Y. & Yang, C. X. Stretched cavity soliton in dispersion-managed Kerr resonators. Phys. Rev. A 92, 023802 (2015). doi: 10.1103/PhysRevA.92.023802
[36] Huang, S. W. et al. Smooth and flat phase-locked Kerr frequency comb generation by higher order mode suppression. Sci. Rep. 6, 26255 (2016). doi: 10.1038/srep26255
[37] Pfeiffer, M. H. et al. Coupling ideality of integrated planar high-Q microresonators. Phys. Rev. Appl. 7, 024026 (2017). doi: 10.1103/PhysRevApplied.7.024026
[38] Song, Y. J., Jung, K. & Kim, J. Impact of pulse dynamics on timing jitter in mode-locked fiber lasers. Opt. Lett. 36, 1761-1763 (2011). doi: 10.1364/OL.36.001761
[39] Capmany, J. & Novak, D. Microwave photonics combines two worlds. Nat. Photon. 1, 319-330 (2007). doi: 10.1038/nphoton.2007.89
[40] Manzoni, C. et al. Coherent pulse synthesis: towards sub-cycle optical waveforms. Laser Photon. Rev. 9, 129-171 (2015). doi: 10.1002/lpor.201400181
[41] Matsko, A. B. & Maleki, L. On timing jitter of mode locked Kerr frequency combs. Opt. Express 21, 28862-28876 (2013). doi: 10.1364/OE.21.028862
[42] Del'Haye, P. et al. Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion. Nat. Photon. 3, 529-533 (2009). doi: 10.1038/nphoton.2009.138
[43] Griffith, A. G. et al. Silicon-chip mid-infrared frequency comb generation. Nat. Commun. 6, 6299 (2015). doi: 10.1038/ncomms7299
[44] Kues, M. et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546, 622-626 (2017). doi: 10.1038/nature22986
[45] Guo, X. et al. Efficient generation of a near-visible frequency comb via Cherenkov-like radiation from a Kerr microcomb. Phys. Rev. Appl. 10, 014012 (2018). doi: 10.1103/PhysRevApplied.10.014012
[46] Pu, M. H. et al. Efficient frequency comb generation in AlGaAs-on-insulator. Optica 3, 823-826 (2016). doi: 10.1364/OPTICA.3.000823
[47] Zhang, M. et al. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4, 1536-1537 (2017). doi: 10.1364/OPTICA.4.001536
[48] Oh, D. Y. et al. Coherent ultra-violet to near-infrared generation in silica ridge waveguides. Nat. Commun. 8, 13922 (2017). doi: 10.1038/ncomms13922
[49] Kuyken, B. et al. An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide. Nat. Commun. 6, 6310 (2015). doi: 10.1038/ncomms7310
[50] Yang, K. Y. et al. Broadband dispersion-engineered microresonator on a chip. Nat. Photon. 10, 316-320 (2016). doi: 10.1038/nphoton.2016.36