[1] |
Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391–402 (2015). doi: 10.1038/nnano.2015.90 |
[2] |
Shah, S. A. A. et al. Progress towards high-efficiency and stable tin-based perovskite solar cells. Energies 13, 5092 (2020). doi: 10.3390/en13195092 |
[3] |
Tan, Z. -K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014). doi: 10.1038/nnano.2014.149 |
[4] |
Liu, Y. et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nat. Photon 13, 760–764 (2019). doi: 10.1038/s41566-019-0505-4 |
[5] |
Deschler, F. et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014). doi: 10.1021/jz5005285 |
[6] |
Quan, L. N., Pelayo García de Arquer, F., Sabatini, R. P. & Sargent, E. H. Perovskites for light emission. Adv. Mater. 30, 1801996 (2018). doi: 10.1002/adma.201801996 |
[7] |
Xing, G. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476–480 (2014). doi: 10.1038/nmat3911 |
[8] |
Chen, S. & Nurmikko, A. Excitonic gain and laser emission from mixed-cation halide perovskite thin films. Optica 5, 1141–1149 (2018). doi: 10.1364/OPTICA.5.001141 |
[9] |
Brenner, P. et al. Highly stable solution processed metal-halide perovskite lasers on nanoimprinted distributed feedback structures. Appl. Phys. Lett. 109, 141106 (2016). doi: 10.1063/1.4963893 |
[10] |
Whitworth, G. L. et al. Nanoimprinted distributed feedback lasers of solution processed hybrid perovskites. Opt. Express 24, 23677–23684 (2016). doi: 10.1364/OE.24.023677 |
[11] |
Zhang, Q., Ha, S. T., Liu, X., Sum, T. C. & Xiong, Q. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett. 14, 5995–6001 (2014). doi: 10.1021/nl503057g |
[12] |
Zhu, H. et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636–642 (2015). doi: 10.1038/nmat4271 |
[13] |
Akkerman, Q. A., Rainò, G., Kovalenko, M. V. & Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018). doi: 10.1038/s41563-018-0018-4 |
[14] |
Su, R. et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett. 17, 3982–3988 (2017). doi: 10.1021/acs.nanolett.7b01956 |
[15] |
Bao, W. et al. Observation of Rydberg exciton polaritons and their condensate in a perovskite cavity. Proc. Natl Acad. Sci. USA 116, 20274–20279 (2019). doi: 10.1073/pnas.1909948116 |
[16] |
Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992). doi: 10.1103/PhysRevLett.69.3314 |
[17] |
Lidzey, D. G. et al. Strong exciton-photon coupling in an organic semiconductor microcavity. Nature 395, 53–55 (1998). doi: 10.1038/25692 |
[18] |
Goto, K., Yamashita, K., Yanagi, H., Yamao, T. & Hotta, S. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation. Appl. Phys. Lett. 109, 061101 (2016). doi: 10.1063/1.4960659 |
[19] |
Deng, H., Haug, H. & Yamamoto, Y. Exciton-polariton Bose-Einstein condensation. Rev. Mod. Phys. 82, 1489–1537 (2010). doi: 10.1103/RevModPhys.82.1489 |
[20] |
Kavokin, A. V., Baumberg, J. J., Malpuech, G. & Laussy, F. P. Microcavities (Oxford University Press, 2017). |
[21] |
Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006). doi: 10.1038/nature05131 |
[22] |
Sanvitto, D. & Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016). doi: 10.1038/nmat4668 |
[23] |
Berlo, N. G. et al. Realizing the classical XY Hamiltonian in polariton simulators. Nat. Mater. 16, 1120–1126 (2016). |
[24] |
Zasedatelev, A. V. et al. A room-temperature organic polariton transistor. Nat. Photon 13, 378–383 (2019). doi: 10.1038/s41566-019-0392-8 |
[25] |
Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005). doi: 10.1038/nature03804 |
[26] |
Stranks, S. D. et al. Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states. Phys. Rev. Appl. 2, 034007 (2014). doi: 10.1103/PhysRevApplied.2.034007 |
[27] |
Jiang, Y., Wang, X. & Pan, A. Properties of excitons and photogenerated charge carriers in metal halide perovskites. Adv. Mater. 22, 1806671 (2019). |
[28] |
Schlaus, A. P., Spencer, M. S. & Zhu, X. -Y. Light-matter interaction and lasing in lead halide perovskites. Acc. Chem. Res. 52, 2950–2959 (2019). doi: 10.1021/acs.accounts.9b00382 |
[29] |
Schlaus, A. P. et al. How lasing happens in CsPbBr3 perovskite nanowires. Nat. Commun. 10, 265 (2019). doi: 10.1038/s41467-018-07972-7 |
[30] |
Su, R. et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature. Nat. Phys. 16, 301–306 (2020). doi: 10.1038/s41567-019-0764-5 |
[31] |
Saba, M., Quochi, F. & Bongiovanni, G. Excited state properties of hybrid perovskites. Acc. Chem. Res. 49, 166–173 (2016). doi: 10.1021/acs.accounts.5b00445 |
[32] |
Weng, G. et al. Electron-hole plasma lasing dynamics in CsPbClmBr3-m microplate lasers. ACS Photon 8, 787–797 (2021). doi: 10.1021/acsphotonics.0c01512 |
[33] |
Nozières, P. & Schmitt-Rink, S. Bose condensation in an attractive Fermion gas: from weak to strong coupling superconductivity. J. Low. Temp. Phys. 59, 195–211 (1985). doi: 10.1007/BF00683774 |
[34] |
Kremp, D., Semkat, D. & Henneberger, K. Quantum condensation in electron-hole plasmas. Phys. Rev. B 75, 125315 (2008). |
[35] |
Kamide, K. & Ogawa, T. What determines the wave function of electron-hole pairs in polariton condensates? Phys. Rev. Lett. 105, 056401 (2010). doi: 10.1103/PhysRevLett.105.056401 |
[36] |
Murotani, Y. et al. Light-driven electron-hole Bardeen-Cooper-Schrieffer-like state in bulk GaAs. Phys. Rev. Lett. 123, 19740 (2019). |
[37] |
Keeling, J., Eastham, P. R., Szymanska, M. H. & Littlewood, P. B. BCS-BEC crossover in a system of microcavity polaritons. Phys. Rev. B 72, 115320 (2005). doi: 10.1103/PhysRevB.72.115320 |
[38] |
Byrnes, T., Horikiri, T., Ishida, N. & Yamamoto, Y. BCS wave-function approach to the BEC-BCS crossover of exciton-polariton condensate. Phys. Rev. Lett. 105, 186402 (2010). doi: 10.1103/PhysRevLett.105.186402 |
[39] |
Horikiri, T. et al. High-energy side-peak emission of exciton polariton condensate in high density regime. Sci. Rep. 6, 25655 (2016). doi: 10.1038/srep25655 |
[40] |
Hu, J. et al. Polariton laser in the Bardeen-Cooper-Schrieffer regime. Phys. Rev. X 11, 011018 (2021). |
[41] |
Yang, Z. et al. Large and ultrastable all-inorganic CsPbBr3 monocrystalline films: low-temperature growth and application for high-performance photodetectors. Adv. Mater. 30, 1802110 (2018). doi: 10.1002/adma.201802110 |
[42] |
Fujiwara, K. et al. Excitation dynamics in layered lead halide perovskite crystal slabs and microcavities. ACS Photon 7, 845–852 (2020). doi: 10.1021/acsphotonics.0c00038 |
[43] |
Dursun, I. et al. Efficient photon recycling and radiation trapping in cesium lead halide perovskite waveguides. ACS Energy Lett. 3, 1492–1498 (2018). doi: 10.1021/acsenergylett.8b00758 |
[44] |
Ryu, H. et al. Role of the A-site cation in low-temperature optical behaviour of APbBr3 (A = Cs, CH3NH3). J. Am. Chem. Soc. 143, 2340–2347 (2020). |
[45] |
Eaton, S. W. et al. Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl Acad. Sci. USA 113, 1993–1998 (2016). doi: 10.1073/pnas.1600789113 |
[46] |
Safdar, A., Wang, Y. & Krauss, T. F. Random lasing in uniform perovskite thin films. Opt. Express 26, A75–A84 (2018). doi: 10.1364/OE.26.000A75 |
[47] |
Zhang, Q. et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv. Funct. Mater. 26, 6238–6245 (2016). |
[48] |
Palmieri, T. et al. Mahan excitons in room-temperature methylammonium lead bromide perovskites. Nat. Commun. 11, 850 (2020). |
[49] |
Christopoulos, S. et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007). |
[50] |
Kéna-Cohen, S. & Forrest, S. R. Room-temperature polariton lasing in an organic single-crystal microcavity. Nat. Photon 4, 371–375 (2010). |
[51] |
Yamashita, K. et al. Ultrafast dynamics of polariton cooling and renormalization in an organic single-crystal microcavity under nonresonant pumping. ACS Photon 5, 2182–2188 (2018). |
[52] |
Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015). |