[1] |
Jiang, W. Y. et al. Free-standing nanoarrays with energetic electrons and active sites for efficient plasmon-driven ammonia synthesis. Small 18, 2201269 (2022). doi: 10.1002/smll.202201269 |
[2] |
Schörner, C. & Lippitz, M. Single molecule nonlinearity in a plasmonic waveguide. Nano Letters 20, 2152-2156 (2020). doi: 10.1021/acs.nanolett.0c00196 |
[3] |
Gadalla, M. N. et al. Imaging of surface plasmon polaritons in low-loss highly metallic titanium nitride thin films in visible and infrared regimes. Optics Express 28, 14536-14546 (2020). doi: 10.1364/OE.391482 |
[4] |
Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nature Photonics 4, 83-91 (2010). doi: 10.1038/nphoton.2009.282 |
[5] |
Colom, R. et al. Enhanced Purcell factor for nanoantennas supporting interfering resonances. Physical Review Research 4, 023189 (2022). doi: 10.1103/PhysRevResearch.4.023189 |
[6] |
Lin, C. C. C. et al. Monolithic plasmonic waveguide architecture for passive and active optical circuits. Nano Letters 20, 2950-2957 (2020). doi: 10.1021/acs.nanolett.9b04612 |
[7] |
Su, Y. et al. Record Purcell factors in ultracompact hybrid plasmonic ring resonators. Science Advances 5, eaav1790 (2019). doi: 10.1126/sciadv.aav1790 |
[8] |
Purcell, E. M. Spontaneous emission probabilities at radio frequencies. in Confined Electrons and Photons: New Physics and Applications (eds Burstein, E. & Weisbuch, C.) (Boston: Springer, 1995), 839-839. |
[9] |
Lafone, L., Sidiropoulos, T. P. H. & Oulton, R. F. Silicon-based metal-loaded plasmonic waveguides for low-loss nanofocusing. Optics Letters 39, 4356-4359 (2014). doi: 10.1364/OL.39.004356 |
[10] |
Wang, F. W. et al. CMOS-compatible electronic-plasmonic transducers based on plasmonic tunnel junctions and Schottky diodes. Small 18, 2105684 (2022). doi: 10.1002/smll.202105684 |
[11] |
Alfaraj, N. et al. Deep-ultraviolet integrated photonic and optoelectronic devices: a prospect of the hybridization of group III–nitrides, III–oxides, and two-dimensional materials. Journal of Semiconductors 40, 121801 (2019). doi: 10.1088/1674-4926/40/12/121801 |
[12] |
Xu, K. K. Integrated silicon directly modulated light source using p-well in standard CMOS technology. IEEE Sensors Journal 16, 6184-6191 (2016). doi: 10.1109/JSEN.2016.2582840 |
[13] |
Hoffmann, M. et al. Conjugated polymer–gold–silver hybrid nanoparticles for plasmonic energy focusing. The Journal of Physical Chemistry C 126, 2475-2481 (2022). doi: 10.1021/acs.jpcc.1c08583 |
[14] |
Naik, G. V., Shalaev, V. M. & Boltasseva, A. Alternative plasmonic materials: beyond gold and silver. Advanced Materials 25, 3264-3294 (2013). doi: 10.1002/adma.201205076 |
[15] |
Amin, R. et al. Heterogeneously integrated ITO plasmonic Mach–Zehnder interferometric modulator on SOI. Scientific Reports 11, 1287 (2021). doi: 10.1038/s41598-020-80381-3 |
[16] |
Kwon, M. S. Discussion of two ways of optically modeling indium–tin–oxide layers in slot waveguides for waveguide analysis. IEEE Photonics Journal 8, 4900108 (2016). |
[17] |
Baek, J., You, J. B. & Yu, K. Free-carrier electro-refraction modulation based on a silicon slot waveguide with ITO. Optics Express 23, 15863-15876 (2015). doi: 10.1364/OE.23.015863 |
[18] |
Lee, H. W. et al. Nanoscale conducting oxide PlasMOStor. Nano Letters 14, 6463-6468 (2014). doi: 10.1021/nl502998z |
[19] |
Kim, J. T. Silicon optical modulators based on tunable plasmonic directional couplers. IEEE Journal of Selected Topics in Quantum Electronics 21, 3300108 (2015). |
[20] |
Zhao, H. W. et al. Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide. IEEE Journal of Selected Topics in Quantum Electronics 21, 192-198 (2015). |
[21] |
Zhu, S. Y., Lo, G. Q. & Kwong, D. L. Design of an ultra -compact electro-absorption modulator comprised of a deposited TiN/HfO2/ITO/Cu stack for CMOS backend integration. Optics Express 22, 17930-17947 (2014). doi: 10.1364/OE.22.017930 |
[22] |
Vasudev, A. P. et al. Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material. Optics Express 21, 26387-26397 (2013). doi: 10.1364/OE.21.026387 |
[23] |
Melikyan, A. et al. Surface Plasmon polariton absorption modulator. Optics Express 19, 8855-8869 (2011). doi: 10.1364/OE.19.008855 |
[24] |
Feigenbaum, E., Diest, K. & Atwater, H. A. Unity order index change in transparent conducting oxides at visible frequencies. Nano Letters 10, 2111-2116 (2010). doi: 10.1021/nl1006307 |
[25] |
Liberal, I. et al. Photonic doping of epsilon-near-zero media. Science 355, 1058-1062 (2017). doi: 10.1126/science.aal2672 |
[26] |
Engheta, N. Pursuing near-zero response. Science 340, 286-287 (2013). doi: 10.1126/science.1235589 |
[27] |
Wu, C. et al. Quantum hybrid plasmonic nanocircuits for versatile polarized photon generation. Advanced Optical Materials 10, 2101596 (2022). doi: 10.1002/adom.202101596 |
[28] |
Bolognesi, M. et al. A fully integrated miniaturized optical biosensor for fast and multiplexing plasmonic detection of high-and low-molecular-weight analytes. Advanced Materials 35, 2208719 (2023). doi: 10.1002/adma.202208719 |
[29] |
Haffner, C. et al. Low-loss Plasmon-assisted electro-optic modulator. Nature 556, 483-486 (2018). doi: 10.1038/s41586-018-0031-4 |
[30] |
Khurgin, J. B. How to deal with the loss in plasmonics and metamaterials. Nature Nanotechnology 10, 2-6 (2015). doi: 10.1038/nnano.2014.310 |
[31] |
Wassel, H. M. G. et al. Opportunities and challenges of using plasmonic components in nanophotonic architectures. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 2, 154-168 (2012). doi: 10.1109/JETCAS.2012.2193934 |
[32] |
Lu, Z. L., Zhao, W. S. & Shi, K. F. Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides. IEEE Photonics Journal 4, 735-740 (2012). doi: 10.1109/JPHOT.2012.2197742 |
[33] |
Chang, K. H. et al. Enhancing on/off ratio of a dielectric-loaded plasmonic logic gate with an amplitude modulator. Scientific Reports 13, 5020 (2023). doi: 10.1038/s41598-023-30823-5 |
[34] |
Maier, M. et al. Ultracompact amplitude modulator by coupling hyperbolic polaritons over a graphene-covered gap. ACS Photonics 5, 544-551 (2018). doi: 10.1021/acsphotonics.7b01094 |
[35] |
Alfaraj, N. et al. Silicon-integrated monocrystalline oxide–nitride heterostructures for deep-ultraviolet optoelectronics. Optical Materials Express 11, 4130-4144 (2021). doi: 10.1364/OME.443872 |
[36] |
Alfaraj, N. et al. Heteroepitaxial β-Ga2O3 on conductive ceramic templates: toward ultrahigh gain deep-ultraviolet photodetection. Advanced Materials Technologies 6, 2100142 (2021). doi: 10.1002/admt.202100142 |
[37] |
Gadalla, M. N. et al. Excitation of strong localized surface Plasmon resonances in highly metallic titanium nitride nano-antennas for stable performance at elevated temperatures. ACS Applied Nano Materials 2, 3444-3452 (2019). doi: 10.1021/acsanm.9b00370 |
[38] |
Feng, X. et al. Photonic approach for generation and fast switching of binary digitally modulated RF signals. IEEE Photonics Journal 12, 5502208 (2020). |
[39] |
Liu, X. G. et al. Electrical tuning of a quantum plasmonic resonance. Nature Nanotechnology 12, 866-870 (2017). doi: 10.1038/nnano.2017.103 |
[40] |
Liu, X. G. et al. Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties. Applied Physics Letters 105, 181117 (2014). doi: 10.1063/1.4900936 |
[41] |
Boltasseva, A. & Atwater, H. A. Low-loss plasmonic metamaterials. Science 331, 290-291 (2011). doi: 10.1126/science.1198258 |
[42] |
Franzen, S. et al. Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films. Optics Letters 34, 2867-2869 (2009). doi: 10.1364/OL.34.002867 |
[43] |
Losego, M. D. et al. Conductive oxide thin films: model systems for understanding and controlling surface Plasmon resonance. Journal of Applied Physics 106, 024903 (2009). doi: 10.1063/1.3174440 |
[44] |
Azani, M. R., Hassanpour, A. & Torres, T. Benefits, problems, and solutions of silver nanowire transparent conductive electrodes in indium tin oxide (ITO)-free flexible solar cells. Advanced Energy Materials 10, 2002536 (2020). doi: 10.1002/aenm.202002536 |
[45] |
Chen, Z. X. et al. Fabrication of highly transparent and conductive indium–tin oxide thin films with a high figure of merit via solution processing. Langmuir 29, 13836-13842 (2013). doi: 10.1021/la4033282 |
[46] |
Rodrigo, D. et al. Mid-infrared plasmonic biosensing with graphene. Science 349, 165-168 (2015). doi: 10.1126/science.aab2051 |
[47] |
Gleiter, H. et al. Nanocrystalline materials: a way to solids with tunable electronic structures and properties?. Acta Materialia 49, 737-745 (2001). doi: 10.1016/S1359-6454(00)00221-4 |
[48] |
Sagmeister, M. et al. Electrically tunable resistance of a metal. Physical Review Letters 96, 156601 (2006). doi: 10.1103/PhysRevLett.96.156601 |
[49] |
Park, J. et al. Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers. Scientific Reports 5, 15754 (2015). doi: 10.1038/srep15754 |
[50] |
Berini, P. Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures. Physical Review B 61, 10484-10503 (2000). doi: 10.1103/PhysRevB.61.10484 |
[51] |
Oulton, R. F. et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photonics 2, 496-500 (2008). doi: 10.1038/nphoton.2008.131 |
[52] |
Alfaraj, N. et al. Optical and interfacial characteristics of a heterojunction between ( 201)-oriented single domain β-(In0.072Ga0.928)2O3 and α-Al2O3 crystals. Optical Materials Express 12, 3273-3283 (2022). doi: 10.1364/OME.462192 |
[53] |
Worfolk, B. J. et al. Ultrahigh electrical conductivity in solution-sheared polymeric transparent films. Proceedings of the National Academy of Sciences of the United States of America 112, 14138-14143 (2015). |
[54] |
Itoh, S. & Maruyama, K. Recoveries of metallic indium and tin from ITO by means of pyrometallurgy. High Temperature Materials and Processes 30, 317-322 (2011). |
[55] |
Minami, T. Transparent conducting oxide semiconductors for transparent electrodes. Semiconductor Science and Technology 20, S35-S44 (2005). doi: 10.1088/0268-1242/20/4/004 |
[56] |
Yu, H. K. et al. Nano-branched transparent conducting oxides: beyond the brittleness limit for flexible electrode applications. Nanoscale 4, 6831-6834 (2012). doi: 10.1039/c2nr32228e |
[57] |
Reineke, S. et al. White organic light-emitting diodes with fluorescent tube efficiency. Nature 459, 234-238 (2009). doi: 10.1038/nature08003 |
[58] |
Sun, Y. R. & Forrest, S. R. Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids. Nature Photonics 2, 483-487 (2008). doi: 10.1038/nphoton.2008.132 |
[59] |
Park, S. et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature 561, 516-521 (2018). doi: 10.1038/s41586-018-0536-x |
[60] |
Zhao, G. Q. et al. Optical transmittance enhancement of flexible copper film electrodes with a wetting layer for organic solar cells. ACS Applied Materials & Interfaces 9, 38695-38705 (2017). |
[61] |
Alfaraj, N. et al. Functional integrity of flexible n-channel metal–oxide–semiconductor field-effect transistors on a reversibly bistable platform. Applied Physics Letters 107, 174101 (2015). doi: 10.1063/1.4934355 |
[62] |
Na, H. et al. Enhanced CO oxidation and cyclic activities in three-dimensional platinum/indium tin oxide/carbon black electrocatalysts processed by cathodic arc deposition. ACS Applied Materials & Interfaces 11, 25179-25185 (2019). |
[63] |
Liu, Y. & Mustain, W. E. Stability limitations for Pt/Sn–In2O3 and Pt/In–SnO2 in acidic electrochemical systems. Electrochimica Acta 115, 116-125 (2014). doi: 10.1016/j.electacta.2013.10.155 |
[64] |
Koch, U. et al. Digital plasmonic absorption modulator exploiting epsilon-near-zero in transparent conducting oxides. IEEE Photonics Journal 8, 4800813 (2016). |
[65] |
Lin, C. C. C. Photonic devices using coupled plasmonic structures. PhD thesis, University of Toronto, Toronto, 2019. |
[66] |
Jiang, W. F., Miao, J. Y. & Li, T. Silicon mode-selective switch via horizontal metal-oxide-semiconductor capacitor incorporated with ENZ-ITO. Scientific Reports 9, 17777 (2019). doi: 10.1038/s41598-019-54332-6 |
[67] |
Tien, C. L. et al. Effect of oxygen flow rate on the optical, electrical, and mechanical properties of DC sputtering ITO thin films. Advances in Condensed Matter Physics 2018, 2647282 (2018). |
[68] |
Soref, R. A. & Bennett, B. R. Kramers-Kronig analysis of electro-optical switching in silicon. Proceedings of SPIE 0704, Integrated Optical Circuit Engineering IV. Cambridge, MA, United States: SPIE, 1987, 32-37. |
[69] |
Cohen, S. S. & Gildenblat, G. S. Metal-Semiconductor Contacts and Devices. (London: Academic, 1986). |
[70] |
Reeves, G. K. Specific contact resistance using a circular transmission line model. Solid-State Electronics 23, 487-490 (1980). doi: 10.1016/0038-1101(80)90086-6 |
[71] |
Schroder, D. K. Semiconductor Material and Device Characterization. (Hoboken: John Wiley & Sons, 2006). |
[72] |
Rastogi, A. C. & Lakshmikumar, S. T. Indium-tin-oxide-metal interfacial resistance and its implication for solar cells. Solar Cells 26, 323-328 (1989). doi: 10.1016/0379-6787(89)90091-4 |
[73] |
Chang, C. Y., Fang, Y. K. & Sze, S. M. Specific contact resistance of metal-semiconductor barriers. Solid-State Electronics 14, 541-550 (1971). doi: 10.1016/0038-1101(71)90129-8 |
[74] |
Buchanan, M., Webb, J. B. & Williams, D. F. Preparation of conducting and transparent thin films of tin-doped indium oxide by magnetron sputtering. Applied Physics Letters 37, 213-215 (1980). doi: 10.1063/1.91829 |
[75] |
Wu, Z. X. et al. Micro metal additive manufactured low-loss slotted rectangular waveguides operating at 220- 500 GHz. Frontiers in Physics 9, 696318 (2021). doi: 10.3389/fphy.2021.696318 |
[76] |
Fiorese, V. et al. Evaluation of micro laser sintering metal 3D-printing technology for the development of waveguide passive devices up to 325 GHz. Proceedings of the 2020 IEEE/MTT-S International Microwave Symposium (IMS). Los Angeles, CA, USA: IEEE, 2020, 1168-1171. |
[77] |
AlAloul, M. & Rasras, M. Low insertion loss plasmon-enhanced graphene all-optical modulator. ACS Omega 6, 7576-7584 (2021). doi: 10.1021/acsomega.0c06108 |
[78] |
Michelotti, F. et al. Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 μm. Optics Letters 34, 839-841 (2009). doi: 10.1364/OL.34.000839 |
[79] |
Liu, A. S. et al. A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor. Nature 427, 615-618 (2004). doi: 10.1038/nature02310 |
[80] |
Haffner, C. et al. All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale. Nature Photonics 9, 525-528 (2015). doi: 10.1038/nphoton.2015.127 |
[81] |
Hu, Y. T. et al. Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon. Laser & Photonics Reviews 10, 307-316 (2016). |
[82] |
Phare, C. T. et al. Graphene electro-optic modulator with 30 GHz bandwidth. Nature Photonics 9, 511-514 (2015). doi: 10.1038/nphoton.2015.122 |