[1] Zhang, S. B. et al. Photonic hyperinterfaces for light manipulations. Optica 7, 687-693 (2020). doi: 10.1364/OPTICA.392356
[2] Dixon, K. et al. Tunable rainbow light trapping in ultrathin resonator arrays. Light Sci. Appl. 9, 194 (2020). doi: 10.1038/s41377-020-00428-y
[3] Zhang, X. Y. et al. Controlling angular dispersions in optical metasurfaces. Light Sci. Appl. 9, 76 (2020). doi: 10.1038/s41377-020-0313-0
[4] Li, J. Y. et al. Inverse design of multifunctional plasmonic metamaterial absorbers for infrared polarimetric imaging. Opt. Express 27, 8375-8386 (2019). doi: 10.1364/OE.27.008375
[5] Li, W. W. et al. Single-frame wide-field nanoscopy based on ghost imaging via sparsity constraints. Optica 6, 1515-1523 (2019). doi: 10.1364/OPTICA.6.001515
[6] Kim, K. et al. Ultrathin arrayed camera for high-contrast near-infrared imaging. Opt. Express 29, 1333-1339 (2021). doi: 10.1364/OE.409472
[7] Xu, Y. et al. Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth. Adv. Opt. Mater. 7, 1801433 (2019). doi: 10.1002/adom.201801433
[8] Camayd-Muñoz, P. et al. Multifunctional volumetric meta-optics for color and polarization image sensors. Optica 7, 280-283 (2020). doi: 10.1364/OPTICA.384228
[9] Xuan, Z. Y. et al. Artificial structural colors and applications. Innovation 2, 100081 (2021).
[10] Chen, X. Y. et al. Light extraction enhancement and directional control of scintillator by using microlens arrays. Opt. Express 26, 23132-23141 (2018). doi: 10.1364/OE.26.023132
[11] Presutti, F. & Monticone, F. Focusing on bandwidth: achromatic metalens limits. Optica 7, 624-631 (2020). doi: 10.1364/OPTICA.389404
[12] Asano, T. et al. Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor. Sci. Adv. 2, e1600499 (2016). doi: 10.1126/sciadv.1600499
[13] Cui, K. H. et al. Tungsten-carbon nanotube composite photonic crystals as thermally stable spectral-selective absorbers and emitters for thermophotovoltaics. Adv. Energy Mater. 8, 1801471 (2018). doi: 10.1002/aenm.201801471
[14] Zhou, J. et al. Ultra-broadband solar absorbers for high-efficiency thermophotovoltaics. Opt. Express 28, 36476-36486 (2020). doi: 10.1364/OE.411918
[15] Park, S. et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature 561, 516-521 (2018). doi: 10.1038/s41586-018-0536-x
[16] Chang, C. C. et al. High-temperature refractory metasurfaces for solar thermophotovoltaic energy harvesting. Nano Lett. 18, 7665-7673 (2018). doi: 10.1021/acs.nanolett.8b03322
[17] Suen, J. Y. et al. Multifunctional metamaterial pyroelectric infrared detectors. Optica 4, 276-279 (2017). doi: 10.1364/OPTICA.4.000276
[18] Frydendahl, C. et al. Giant enhancement of silicon plasmonic shortwave infrared photodetection using nanoscale self-organized metallic films. Optica 7, 371-379 (2020). doi: 10.1364/OPTICA.379549
[19] Landy, N. I. et al. Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008). doi: 10.1103/PhysRevLett.100.207402
[20] Zhuang, Y. Q. et al. Low-scattering tri-band metasurface using combination of diffusion, absorption and cancellation. IEEE Access 6, 17306-17312 (2018). doi: 10.1109/ACCESS.2018.2810262
[21] Jiang, W. et al. Electromagnetic wave absorption and compressive behavior of a three-dimensional metamaterial absorber based on 3D printed honeycomb. Sci. Rep. 8, 4817 (2018). doi: 10.1038/s41598-018-23286-6
[22] Huang, Y. J. et al. Catenary electromagnetics for ultra-broadband lightweight absorbers and large-scale flat antennas. Adv. Sci. 6, 1801691 (2019). doi: 10.1002/advs.201801691
[23] Ji, W. Y. et al. Three-dimensional ultra-broadband absorber based on novel zigzag-shaped structure. Opt. Express 27, 32835-32845 (2019). doi: 10.1364/OE.27.032835
[24] Min, P. P. et al. Transparent ultrawideband absorber based on simple patterned resistive metasurface with three resonant modes. Opt. Express 28, 19518-19530 (2020). doi: 10.1364/OE.396812
[25] Ding, P. et al. Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials. J. Opt. 13, 075005 (2011). doi: 10.1088/2040-8978/13/7/075005
[26] Li, W. et al. Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Adv. Mater. 26, 7959-7965 (2014). doi: 10.1002/adma.201401874
[27] Massiot, I. et al. Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers. ACS Photon. 1, 878-884 (2014). doi: 10.1021/ph500168b
[28] Liu, Z. Q. et al. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation. ACS Appl. Mater. Interfaces 7, 4962-4968 (2015). doi: 10.1021/acsami.5b00056
[29] Qian, Q. Y. et al. Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled mie resonances. Adv. Opt. Mater. 5, 1700064 (2017). doi: 10.1002/adom.201700064
[30] Lei, L. et al. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial. Opt. Express 26, 5686-5693 (2018). doi: 10.1364/OE.26.005686
[31] Wu, S. L. et al. Large-area, ultrathin metasurface exhibiting strong unpolarized ultrabroadband absorption. Adv. Opt. Mater. 7, 1901162 (2019). doi: 10.1002/adom.201901162
[32] Mou, N. L. et al. Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material. Nanoscale 12, 5374-5379 (2020). doi: 10.1039/C9NR07602F
[33] Jiang, X. Y. et al. Ultrabroadband light absorption based on photonic topological transitions in hyperbolic metamaterials. Opt. Express 28, 705-714 (2020). doi: 10.1364/OE.382139
[34] Zhu, L. et al. Ultra-broadband absorber based on metal-insulator-metal four-headed arrow nanostructure. Plasmonics 15, 2153-2159 (2020). doi: 10.1007/s11468-020-01244-1
[35] Yu, P. Q. et al. Ultra-wideband solar absorber based on refractory titanium metal. Renew. Energy 158, 227-235 (2020). doi: 10.1016/j.renene.2020.05.142
[36] Liu, Y. Y. et al. Ultra-broadband perfect absorber utilizing a multi-size rectangular structure in the UV-MIR range. Results Phys. 18, 103336 (2020). doi: 10.1016/j.rinp.2020.103336
[37] Yi, Z. et al. Broadband polarization-insensitive and wide-angle solar energy absorber based on tungsten ring-disc array. Nanoscale 12, 23077-23083 (2020). doi: 10.1039/D0NR04502K
[38] Liu, X. L. et al. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys. Rev. Lett. 104, 207403 (2010). doi: 10.1103/PhysRevLett.104.207403
[39] Hao, J. M. et al. High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. 96, 251104 (2010). doi: 10.1063/1.3442904
[40] Feng, R. et al. Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling. Opt. Express 22, A1713-A1724 (2014). doi: 10.1364/OE.22.0A1713
[41] Raman, A. P. et al. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540-544 (2014). doi: 10.1038/nature13883
[42] Guo, W. L., Liu, Y. X. & Han, T. C. Ultra-broadband infrared metasurface absorber. Opt. Express 24, 20586-20592 (2016). doi: 10.1364/OE.24.020586
[43] Hasan, D. et al. Novel CMOS-compatible Mo-AlN-Mo Platform for metamaterial-based mid-IR absorber. ACS Photon. 4, 302-315 (2017). doi: 10.1021/acsphotonics.6b00672
[44] Zhai, Y. et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062-1066 (2017). doi: 10.1126/science.aai7899
[45] Li, Z. G. et al. Wavelength-selective mid-infrared metamaterial absorbers with multiple tungsten cross resonators. Opt. Express 26, 5616-5631 (2018). doi: 10.1364/OE.26.005616
[46] Shrestha, S. et al. Indium tin oxide broadband metasurface absorber. ACS Photon. 5, 3526-3533 (2018). doi: 10.1021/acsphotonics.8b00781
[47] Lei, L. et al. Tunable and scalable broadband metamaterial absorber involving VO2-based phase transition. Photon. Res. 7, 734-741 (2019). doi: 10.1364/PRJ.7.000734
[48] Fann, C. H. et al. Broadband infrared plasmonic metamaterial absorber with multipronged absorption mechanisms. Opt. Express 27, 27917-27926 (2019). doi: 10.1364/OE.27.027917
[49] Luo, Y. et al. Ultra-broadband and high absorbance metamaterial absorber in long wavelength Infrared based on hybridization of embedded cavity modes. Opt. Commun. 448, 1-9 (2019). doi: 10.1016/j.optcom.2019.04.080
[50] Luo, Y. et al. Ultra-broadband metamaterial absorber in long wavelength Infrared band based on resonant cavity modes. Opt. Commun. 459, 124948 (2020). doi: 10.1016/j.optcom.2019.124948
[51] Hou, E. Z. et al. Mid-wave and long-wave infrared dual-band stacked metamaterial absorber for broadband with high refractive index sensitivity. Appl. Opt. 59, 2695-2700 (2020). doi: 10.1364/AO.384027
[52] Zhu, J. F. et al. Ultra-broadband terahertz metamaterial absorber. Appl. Phys. Lett. 105, 021102 (2014). doi: 10.1063/1.4890521
[53] Mou, N. L. et al. Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces. Opt. Express 26, 11728-11736 (2018). doi: 10.1364/OE.26.011728
[54] Kenney, M., Grant, J. & Cumming, D. R. S. Alignment-insensitive bilayer THz metasurface absorbers exceeding 100% bandwidth. Opt. Express 27, 20886-20900 (2019). doi: 10.1364/OE.27.020886
[55] Cen, C. L. et al. Theoretical design of a triple-band perfect metamaterial absorber in the THz frequency range. Results Phys. 14, 102463 (2019). doi: 10.1016/j.rinp.2019.102463
[56] Du, C. et al. An ultra-broadband terahertz metamaterial coherent absorber using multilayer electric ring resonator structures based on anti-reflection coating. Nanoscale 12, 9769-9775 (2020). doi: 10.1039/C9NR10668E
[57] Wu, G. Z. et al. Ultra-wideband tunable metamaterial perfect absorber based on vanadium dioxide. Opt. Express 29, 2703-2711 (2021). doi: 10.1364/OE.416227
[58] Liu, Y. et al. Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon. Laser Phys. 18, 1148-1152 (2008). doi: 10.1134/S1054660X08100071
[59] Nguyen, K. N. et al. On the optical and morphological properties of microstructured Black Silicon obtained by cryogenic-enhanced plasma reactive ion etching. J. Appl. Phys. 113, 194903 (2013). doi: 10.1063/1.4805024
[60] Piotrowski, J. & Rogalski, A. Uncooled long wavelength infrared photon detectors. Infrared Phys. Technol. 46, 115-131 (2004). doi: 10.1016/j.infrared.2004.03.016
[61] Tao, J. et al. Dual functionality metamaterial enables ultra-compact, highly sensitive uncooled infrared sensor. Nanophotonics 10, 1337-1346 (2021). doi: 10.1515/nanoph-2020-0607
[62] Palik, E. D. Handbook of Optical Constants of Solids (San Diego, CA, USA: Academic Press, 1998).
[63] Kischkat, J. et al. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. Appl. Opt. 51, 6789-6798 (2012). doi: 10.1364/AO.51.006789