[1] Selkoe, D. J. & Hardy, J. The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol. Med. 8, 595–608 (2016). doi: 10.15252/emmm.201606210
[2] Panza, F. et al. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nature Reviews. Neurology 15, 73–88 (2019).
[3] Linse, S. et al. Kinetic fingerprints differentiate the mechanisms of action of anti-Aβ antibodies. Nat. Struct. Mol. Biol. 27, 1125–1133 (2020). doi: 10.1038/s41594-020-0505-6
[4] Klementieva, O. et al. Super-resolution infrared imaging of polymorphic amyloid aggregates directly in neurons. Adv. Sci. 7, 1903004 (2020). doi: 10.1002/advs.201903004
[5] Stephens, A. D., Zacharopoulou, M. & Schierle, G. S. K. The cellular environment affects monomeric α-synuclein structure. Trends Biochem. Sci. 44, 453–466 (2019). doi: 10.1016/j.tibs.2018.11.005
[6] Esmieu, C. et al. Copper-targeting approaches in Alzheimer's disease: how to improve the fallouts obtained from in vitro studies. Inorg. Chem. 58, 13509–13527 (2019). doi: 10.1021/acs.inorgchem.9b00995
[7] Bourassa, M. W. et al. Elevated copper in the amyloid plaques and iron in the cortex are observed in mouse models of Alzheimer's disease that exhibit neurodegeneration. Biomed. Spectrosc. Imaging 2, 129–139 (2013). doi: 10.3233/BSI-130041
[8] Telling, N. D. et al. Iron biochemistry is correlated with amyloid plaque morphology in an established mouse model of Alzheimer's disease. Cell Chem. Biol. 24, 1205–1215. e3 (2017). doi: 10.1016/j.chembiol.2017.07.014
[9] Cheignon, C. et al. Oxidative stress and the amyloid beta peptide in Alzheimer's disease. Redox Biol. 14, 450–464 (2018). doi: 10.1016/j.redox.2017.10.014
[10] Bousejra-ElGarah, F. et al. Iron(II) binding to amyloid-β, the Alzheimer's peptide. Inorg. Chem. 50, 9024–9030 (2011). doi: 10.1021/ic201233b
[11] Syme, C. D. et al. Copper binding to the Amyloid-β (Aβ) peptide associated with Alzheimer's disease: folding, coordination geometry, pH dependence, stoichiometry, and affinity of Aβ-(1-28): insights from a range of complementary spectroscopic techniques. J. Biol. Chem. 279, 18169–18177 (2004). doi: 10.1074/jbc.M313572200
[12] Rival, T. et al. Fenton chemistry and oxidative stress mediate the toxicity of the β-amyloid peptide in a Drosophila model of Alzheimer's disease. Eur. J. Neurosci. 29, 1335–1347 (2009). doi: 10.1111/j.1460-9568.2009.06701.x
[13] Nunomura, A. et al. Involvement of oxidative stress in Alzheimer disease. J. Neuropathol. Exp. Neurol. 65, 631–641 (2006). doi: 10.1097/01.jnen.0000228136.58062.bf
[14] Dear, A. J. et al. Kinetic diversity of amyloid oligomers. Proc. Natl Acad. Sci. USA 117, 12087–12094 (2020). doi: 10.1073/pnas.1922267117
[15] Kreuzer, M. et al. Lipids status and copper in a single astrocyte of the rat model for amyotrophic lateral sclerosis: correlative synchrotron-based X-ray and infrared imaging. J. Biophotonics 13, e202000069 (2020). doi: 10.1002/jbio.202000069
[16] Zhang, D. L. et al. Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution. Sci. Adv. 2, e1600521 (2016). doi: 10.1126/sciadv.1600521
[17] Lima, C. et al. Imaging isotopically labeled bacteria at the single-cell level using high-resolution optical infrared photothermal spectroscopy. Anal. Chem. 93, 3082–3088 (2021). doi: 10.1021/acs.analchem.0c03967
[18] Spadea, A. et al. Analysis of fixed and live single cells using optical photothermal infrared with concomitant Raman spectroscopy. Anal. Chem. 93, 3938–3950 (2021). doi: 10.1021/acs.analchem.0c04846
[19] Wang, A. J. et al. Resolving nanocomposite interfaces via simultaneous submicrometer optical-photothermal infrared-Raman microspectroscopy. Adv. Mater. Interfaces 8, 2001720 (2021). doi: 10.1002/admi.202001720
[20] Kansiz, M. et al. Optical photothermal infrared microspectroscopy with simultaneous Raman – a new non-contact failure analysis technique for identification of < 10 μm organic contamination in the hard drive and other electronics industries. Microsc. Today 28, 26–36 (2020). doi: 10.1017/S1551929520000917
[21] Arosio, P., Knowles, T. P. J. & Linse, S. On the lag phase in amyloid fibril formation. Phys. Chem. Chem. Phys. 17, 7606–7618 (2015). doi: 10.1039/C4CP05563B
[22] Martinsson, I. et al. APP depletion alters selective pre- and post-synaptic proteins. Mol. Cell. Neurosci. 95, 86–95 (2019). doi: 10.1016/j.mcn.2019.02.003
[23] Barth, A. Infrared spectroscopy of proteins. BiochimicaBiophysica Acta (BBA)-Bioenerg. 1767, 1073–1101 (2007). doi: 10.1016/j.bbabio.2007.06.004
[24] Cerf, E. et al. Antiparallel β-sheet: a signature structure of the oligomeric amyloid β-peptide. Biochem. J. 421, 415–423 (2009). doi: 10.1042/BJ20090379
[25] Dreissig, I. et al. Quantification of brain lipids by FTIR spectroscopy and partial least squares regression. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. 71, 2069–2075 (2009). doi: 10.1016/j.saa.2008.08.008
[26] Petibois, C. & Déléris, G. Oxidative stress effects on erythrocytes determined by FT-IR spectrometry. Analyst 129, 912–916 (2004). doi: 10.1039/B408931F
[27] Wells, K. et al. Neural membrane phospholipids in Alzheimer disease. Neurochem. Res. 20, 1329–1333 (1995). doi: 10.1007/BF00992508
[28] García-Morales, V. et al. Membrane-derived phospholipids control synaptic neurotransmission and plasticity. PLoS Biol. 13, e1002153 (2015). doi: 10.1371/journal.pbio.1002153
[29] Fuchs, B., Bresler, K. & Schiller, J. Oxidative changes of lipids monitored by MALDI MS. Chem. Phys. Lipids 164, 782–795 (2011). doi: 10.1016/j.chemphyslip.2011.09.006
[30] Oleszko, A. et al. Application of FTIR-ATR spectroscopy to determine the extent of lipid peroxidation in plasma during haemodialysis. BioMed. Res. Int. 2015, 245607 (2015). doi: 10.1155/2015/245607
[31] Arrondo, J. L. R. & Goñi, F. M. Infrared studies of protein-induced perturbation of lipids in lipoproteins and membranes. Chem. Phys. Lipids 96, 53–68 (1998). doi: 10.1016/S0009-3084(98)00080-2
[32] Galeb, H. A. et al. The impact of single and double hydrogen bonds on crystallization and melting regimes of Ajwa and Barni lipids. Food Res. Int. 48, 657–666 (2012). doi: 10.1016/j.foodres.2012.06.006
[33] Muik, B. et al. Two-dimensional correlation spectroscopy and multivariate curve resolution for the study of lipid oxidation in edible oils monitored by FTIR and FT-Raman spectroscopy. Analytica Chim. Acta 593, 54–67 (2007). doi: 10.1016/j.aca.2007.04.050
[34] Rohman, A. & Che Man, Y. B. Application of Fourier transform infrared (FT-IR) spectroscopy combined with chemometrics for authentication of cod-liver oil. Vibrational Spectrosc. 55, 141–145 (2011). doi: 10.1016/j.vibspec.2010.10.001
[35] Sánchez-Alonso, I., Carmona, P. & Careche, M. Vibrational spectroscopic analysis of hake (Merluccius merluccius L. ) lipids during frozen storage. Food Chem. 132, 160–167 (2012). doi: 10.1016/j.foodchem.2011.10.047
[36] Takahashi, H., French, S. W. & Wong, P. T. T. Alterations in hepatic lipids and proteins by chronic ethanol intake: a high-pressure Fourier transform infrared spectroscopic study on alcoholic liver disease in the rat. Alcohol. Clin. Exp. Res. 15, 219–223 (1991). doi: 10.1111/j.1530-0277.1991.tb01859.x
[37] Verity, J. E. et al. Tracking molecular interactions in membranes by simultaneous ATR-FTIR-AFM. Biophys. J. 97, 1225–1231 (2009). doi: 10.1016/j.bpj.2009.06.013
[38] Somogyi, A. et al. Optical design and multi-length-scale scanning spectro-microscopy possibilities at the Nanoscopium beamline of Synchrotron Soleil. J. Synchrotron Radiat. 22, 1118–1129 (2015). doi: 10.1107/S1600577515009364
[39] Das, S. et al. Manganese mapping using a fluorescent Mn2+ sensor and nanosynchrotron X-ray fluorescence reveals the role of the Golgi apparatus as a manganese storage site. Inorg. Chem. 58, 13724–13732 (2019). doi: 10.1021/acs.inorgchem.9b01389
[40] Hostachy, S. et al. Graftable SCoMPIs enable the labeling and X-ray fluorescence imaging of proteins. Chem. Sci. 9, 4483–4487 (2018). doi: 10.1039/C8SC00886H
[41] Jin, Q. L. et al. Preserving elemental content in adherent mammalian cells for analysis by synchrotron-based x-ray fluorescence microscopy. J. Microsc. 265, 81–93 (2017). doi: 10.1111/jmi.12466
[42] Benseny-Cases, N. et al. Microspectroscopy (μFTIR) reveals Co-localization of lipid oxidation and amyloid plaques in human Alzheimer's disease brains. Anal. Chem. 86, 12047–12054 (2014). doi: 10.1021/ac502667b
[43] Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). doi: 10.1038/nmeth.2019
[44] Medjoubi, K. et al. Development of fast, simultaneous and multi-technique scanning hard X-ray microscopy at Synchrotron Soleil. J. Synchrotron Radiat. 20, 293–299 (2013). doi: 10.1107/S0909049512052119