[1] |
Levoy, M. et al. Light field microscopy. ACM Transactions on Graphics (TOG) 25, 924-934 (2006). doi: 10.1145/1141911.1141976 |
[2] |
Prevedel, R. et al. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nature Methods 11, 727-730 (2014). doi: 10.1038/nmeth.2964 |
[3] |
Wang, Z. K. et al. Real-time volumetric reconstruction of biological dynamics with light-field microscopy and deep learning. Nature Methods 18, 551-556 (2021). doi: 10.1038/s41592-021-01058-x |
[4] |
Zhang, Z. et al. Imaging volumetric dynamics at high speed in mouse and zebrafish brain with confocal light field microscopy. Nature Biotechnology 39, 74-83 (2021). doi: 10.1038/s41587-020-0628-7 |
[5] |
Ng, R. et al. Light field photography with a hand-held plenoptic camera. (Stanford University, 2005). |
[6] |
Shi, S. X. et al. Volumetric calibration enhancements for single-camera light-field PIV. Experiments in Fluids 60, 21 (2019). doi: 10.1007/s00348-018-2670-5 |
[7] |
Guo, C. L. et al. Fourier light-field microscopy. Optics Express 27, 25573-25594 (2019). doi: 10.1364/OE.27.025573 |
[8] |
Wu, J. M. et al. Iterative tomography with digital adaptive optics permits hour-long intravital observation of 3D subcellular dynamics at millisecond scale. Cell 184, 3318-3332.E17 (2021). doi: 10.1016/j.cell.2021.04.029 |
[9] |
Hua, X. W., Liu, W. H. & Jia, S. High-resolution Fourier light-field microscopy for volumetric multi-color live-cell imaging. Optica 8, 614-620 (2021). doi: 10.1364/OPTICA.419236 |
[10] |
Lu, Z. et al. Long-term intravital subcellular imaging with confocal scanning light-field microscopy. Nature Biotechnology 43, 569-580, doi: 10.1038/s41587-024-02249-5 (2025). |
[11] |
Wagner, N. et al. Deep learning-enhanced light-field imaging with continuous validation. Nature Methods 18, 557-563 (2021). doi: 10.1038/s41592-021-01136-0 |
[12] |
Lu, Z. et al. Virtual-scanning light-field microscopy for robust snapshot high-resolution volumetric imaging. Nature Methods 20, 735-746 (2023). doi: 10.1038/s41592-023-01839-6 |
[13] |
Falk, T. et al. U-Net: deep learning for cell counting, detection, and morphometry. Nature Methods 16, 67-70 (2019). doi: 10.1038/s41592-018-0261-2 |
[14] |
Wan, M. Z. & Jing, N. Style recommendation and simulation for handmade artworks using generative adversarial networks. Scientific Reports 14, 28002 (2024). doi: 10.1038/s41598-024-79144-1 |
[15] |
Lin, B. et al. Real-time and universal network for volumetric imaging from microscale to macroscale at high resolution. Light Sci Appl 14, 178 (2025). doi: 10.1038/s41377-025-01842-w |
[16] |
Cao, R. J. et al. Dark-based optical sectioning assists background removal in fluorescence microscopy. Nature Methods 22, 1299-1310 (2025). doi: 10.1038/s41592-025-02667-6 |
[17] |
Hou, Y. W. et al. Multi-resolution analysis enables fidelity-ensured deconvolution for fluorescence microscopy. eLight 4, 14 (2024). doi: 10.1186/s43593-024-00073-7 |
[18] |
Ma, C. X. et al. Pretraining a foundation model for generalizable fluorescence microscopy-based image restoration. Nature Methods 21, 1558-1567 (2024). doi: 10.1038/s41592-024-02244-3 |