[1] Zhou, Z. P., Yin, B. & Michel, J. Corrigendum: on-chip light sources for silicon photonics. Light Sci. Appl. 4, e16098 (2016). doi: 10.1038/lsa.2016.98
[2] Lukianova-Hleb, E. Y. et al. On-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles. Nat. Med. 20, 778–784 (2014). doi: 10.1038/nm.3484
[3] Hara, T. et al. Two-colour hard x-ray free-electron laser with wide tunability. Nat. Commun. 4, 2919 (2013). doi: 10.1038/ncomms3919
[4] Bleuet, P. et al. Probing the structure of heterogeneous diluted materials by diffraction tomography. Nat. Mater. 7, 468–472 (2008). doi: 10.1038/nmat2168
[5] Bargheer, M., Zhavoronkov, N., Woerner, M. & Elsaesser, T. Recent progress in ultrafast X-ray diffraction. Chemphyschem. 7, 783–792 (2006).
[6] Adamo, G. et al. Light well: a tunable free-electron light source on a chip. Phys. Rev. Lett. 103, 113901 (2009). doi: 10.1103/PhysRevLett.103.113901
[7] Smith, S. J. & Purcell, E. M. Visible light from localized surface charges moving across a grating. Phys. Rev. 92, 1069 (1953). doi: 10.1103/PhysRev.92.1069
[8] Kaminer, I. et al. Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder. Phys. Rev. X 7, 011003 (2017).
[9] Bar-Lev D., Gover A., Scheuer J. Plasmonic metasurfaces for particle beam manipulation and radiation generation. OSA Technical Digest (Optical Society of America). Compact EUV & Light Sources 2016, Long Beach, CA, USA, 20-22 March 2016, EM9A.
[10] Adamo, G. et al. Electron-beam-driven collective-mode metamaterial light source. Phys. Rev. Lett. 109, 217401 (2012). doi: 10.1103/PhysRevLett.109.217401
[11] Liu, F. et al. Integrated Cherenkov radiation emitter eliminating the electron velocity threshold. Nat. Photonics 11, 289–292 (2017). doi: 10.1038/nphoton.2017.45
[12] Shaffer, T. M., Pratt, E. C. & Grimm, J. Utilizing the power of Cerenkov light with nanotechnology. Nat. Nanotechnol. 12, 106–117 (2017). doi: 10.1038/nnano.2016.301
[13] Wong, L. J., Kaminer, I., Ilic, O., Joannopoulos, J. D. & Soljačić, M. Towards graphene Plasmon-based free-electron infrared to X-ray sources. Nat. Photonics 10, 46–52 (2016). doi: 10.1038/nphoton.2015.223
[14] Kaminer, I. et al. Efficient plasmonic emission by the quantum Čerenkov effect from hot carriers in graphene. Nat. Commun. 7, 11880 (2016). doi: 10.1038/ncomms11880
[15] Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).
[16] Wörner, H. J. et al. Charge migration and charge transfer in molecular systems. Struct. Dyn. 4, 061508 (2017). doi: 10.1063/1.4996505
[17] Goetz, R. E., Merke, M., Karamatskou, A., Santra, R. & Koch, C. P. Maximizing hole coherence in ultrafast photoionization of argon with an optimization by sequential parametrization update. Phys. Rev. A. 94, 023420 (2016). doi: 10.1103/PhysRevA.94.023420
[18] Tanaka, S. & Mukamel, S. Coherent X-ray Raman spectroscopy: a nonlinear local probe for electronic excitations. Phys. Rev. Lett. 89, 043001 (2002). doi: 10.1103/PhysRevLett.89.043001
[19] Mukamel, S. et al. Coherent multidimensional optical probes for electron correlations and exciton dynamics: from NMR to X-rays. Acc. Chem. Res. 42, 553–562 (2009). doi: 10.1021/ar800258z
[20] Scherz, A. et al. Nanoscale imaging with resonant coherent X rays: extension of multiple-wavelength anomalous diffraction to nonperiodic structures. Phys. Rev. Lett. 101, 076101 (2008). doi: 10.1103/PhysRevLett.101.076101
[21] Lin, D. M., Fan, P. Y., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014). doi: 10.1126/science.1253213
[22] Yu, N. F. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014). doi: 10.1038/nmat3839
[23] Sun, S. L. et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 11, 426–431 (2012). doi: 10.1038/nmat3292
[24] Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713
[25] Ni, X. J., Kildishev, A. V. & Shalaev, V. M. Metasurface holograms for visible light. Nat. Commun. 4, 2807 (2013). doi: 10.1038/ncomms3807
[26] Maguid, E. et al. Disorder-induced optical transition from spin hall to random rashba effect. Science 358, 1411–1415 (2017). doi: 10.1126/science.aap8640
[27] Meinzer, N., Barnes, W. L. & Hooper, I. R. Plasmonic meta-atoms and metasurfaces. Nat. Photonics 8, 889–898 (2014). doi: 10.1038/nphoton.2014.247
[28] Soukoulis, C. M. & Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics 5, 523–530 (2011). doi: 10.1038/nphoton.2011.154
[29] Manfrinato, V. R. et al. Aberration-corrected electron beam lithography at the one nanometer length scale. Nano. Lett. 17, 4562–4567 (2017). doi: 10.1021/acs.nanolett.7b00514
[30] Lachaine, R., Boulais, É., Rioux, D., Boutopoulos, C. & Meunier, M. Computational design of durable spherical nanoparticles with optimal material, shape, and size for ultrafast Plasmon-enhanced nanocavitation. ACS Photon 3, 2158–2169 (2016). doi: 10.1021/acsphotonics.6b00652
[31] Roberts, A. et al. Response of graphene to femtosecond high-intensity laser irradiation. Appl. Phys. Lett. 99, 051912 (2011). doi: 10.1063/1.3623760
[32] Yoshikawa, N., Tamaya, T. & Tanaka, K. High-harmonic generation in graphene enhanced by elliptically polarized light excitation. Science 356, 736–738 (2017). doi: 10.1126/science.aam8861
[33] Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972). doi: 10.1103/PhysRevB.6.4370
[34] Floettmann, K. Generation of sub-fs electron beams at few-MeV energies. Nucl. Instrum. Methods Phys. Res. A 740, 34–38 (2014). doi: 10.1016/j.nima.2013.12.031
[35] Christensen T. From Classical to Quantum Plasmonics in Three and Two Dimensions. Chapter 3, 37-80. Springer Thesis; 2017.
[36] Graves, W. S. et al. Compact x-ray source based on burst-mode inverse compton scattering at 100 kHz. Phys. Rev. ST Accel. Beams 17, 120701 (2014). doi: 10.1103/PhysRevSTAB.17.120701
[37] Bouhelier, A. et al. Surface Plasmon characteristics of tunable photoluminescence in single gold nanorods. Phys. Rev. Lett. 95, 267405 (2005). doi: 10.1103/PhysRevLett.95.267405
[38] Wang, L. et al. Nano-ablation of silica by plasmonic surface wave at low fluence. Opt. Lett. 42, 4446–4449 (2017). doi: 10.1364/OL.42.004446
[39] Kim, S. et al. High-harmonic generation by resonant Plasmon field enhancement. Nature 453, 757–760 (2008). doi: 10.1038/nature07012
[40] Chang, C., Tang, C. X. & Wu, J. H. High-gain thompson-scattering x-ray free-electron laser by time-synchronic laterally tilted optical wave. Phys. Rev. Lett. 110, 064802 (2013). doi: 10.1103/PhysRevLett.110.064802
[41] Baum, P. On the physics of ultrashort single-electron pulses for time-resolved microscopy and diffraction. Chem. Phys. 423, 55–61 (2013). doi: 10.1016/j.chemphys.2013.06.012
[42] Aidelsburger, M., Kirchner, F. O., Krausz, F. & Baum, P. Single-electron pulses for ultrafast diffraction. Proc.. Natl. Acad. Sci. U. S. A. 107, 19714–19719 (2010). doi: 10.1073/pnas.1010165107
[43] Guénot, D. et al. Relativistic electron beams driven by kHz single-cycle light pulses. Nat. Photonics 11, 293–296 (2017). doi: 10.1038/nphoton.2017.46
[44] Novotny L., Hecht B. Principles of Nano-Optics. Chapter 6, 173-224. Cambridge: Cambridge University Press; 2006.
[45] Jablan, M., Buljan, H. & Soljačić, M. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009). doi: 10.1103/PhysRevB.80.245435
[46] Christensen, J., Manjavacas, A., Thongrattanasiri, S., Koppens, F. H. L. & García de Abajo, F. J. Graphene Plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano 6, 431–440 (2012). doi: 10.1021/nn2037626
[47] Chen, J. N. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012). doi: 10.1038/nature11254
[48] Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012). doi: 10.1038/nature11253
[49] Brar, V. W., Jang, M. S., Sherrott, M., Lopez, J. J. & Atwater, H. A. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. Nano. Lett. 13, 2541–2547 (2013). doi: 10.1021/nl400601c
[50] Plettner, T., Lu, P. P. & Byer, R. L. Proposed few-optical cycle laser-driven particle accelerator structure. Phys. Rev. ST Accel. Beams 9, 111301 (2006). doi: 10.1103/PhysRevSTAB.9.111301
[51] Bar-Lev, D. & Scheuer, J. Plasmonic metasurface for efficient ultrashort pulse laser-driven particle acceleration. Phys. Rev. ST Accel. Beams 17, 121302 (2014). doi: 10.1103/PhysRevSTAB.17.121302
[52] Wootton, K. P., McNeur, J. & Leedle, K. J. Dielectric laser accelerators: designs, experiments, and applications. Rev. Accel. Sci. Technol. 9, 105–126 (2016). doi: 10.1142/S179362681630005X
[53] Pizzi A., et al. Graphene metamaterials for intense, tunable and compact EUV and X-sources. OSA Technical Digest (Optical Society of America), Conference on Lasers and Electro-Optics, San Jose, CA, USA, 13–18 May 2018 FW4H.7
[54] Mohammad, M. A., Dew, S. K., Evoy, S. & Stepanova, M. Fabrication of sub-10 nm silicon carbon nitride resonators using a hydrogen silsesquioxane mask patterned by electron beam lithography. Microelectron. Eng. 88, 2338–2341 (2011). doi: 10.1016/j.mee.2010.11.045
[55] Feng, B. et al. Nanofabrication of silicon nanowires with high aspect ratio for photo-electron sensing. Microelectron. Eng. 195, 139–144 (2018). doi: 10.1016/j.mee.2018.04.009
[56] Popmintchev, T. et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287–1291 (2012). doi: 10.1126/science.1218497
[57] Nanni, E. A., Graves, W. S. & Moncton, D. E. Nanomodulated electron beams via electron diffraction and emittance exchange for coherent x-ray generation. Phys. Rev. Accel. Beams 21, 014401 (2018). doi: 10.1103/PhysRevAccelBeams.21.014401
[58] Graves, W. S., Kärtner, F. X., Moncton, D. E. & Piot, P. Intense superradiant x rays from a compact source using a nanocathode array and emittance exchange. Phys. Rev. Lett. 108, 263904 (2012). doi: 10.1103/PhysRevLett.108.263904
[59] Dunham, B. et al. Record high-average current from a high-brightness photoinjector. Appl. Phys. Lett. 102, 034105 (2013). doi: 10.1063/1.4789395
[60] Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017). doi: 10.1038/nmat4792
[61] Vakil, A. & Engheta, N. Transformation optics using graphene. Science 332, 1291–1294 (2011). doi: 10.1126/science.1202691
[62] Wang, Q. et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics 10, 60–65 (2015). doi: 10.1038/nphoton.2015.247
[63] Falkovsky, L. A. & Varlamov, A. A. Space-time dispersion of graphene conductivity. Eur. Phys. J. B 56, 281–284 (2007). doi: 10.1140/epjb/e2007-00142-3
[64] Falkovsky, L. A. Optical properties of graphene. J. Phys. Conf. Ser. 129, 012004 (2008). doi: 10.1088/1742-6596/129/1/012004