[1] Rong, Y. G. et al. Challenges for commercializing perovskite solar cells. Science 361, eaat8235 (2018). doi: 10.1126/science.aat8235
[2] Han, Q. F. et al. High-performance perovskite/Cu(In, Ga)Se2 monolithic tandem solar cells. Science 361, 904–908 (2018). doi: 10.1126/science.aat5055
[3] Chen, Z. L. et al. Thin single crystal perovskite solar cells to harvest below-bandgap light absorption. Nat. Commun. 8, 1890 (2017). doi: 10.1038/s41467-017-02039-5
[4] Liu, Y. C. et al. Low-temperature-gradient crystallization for multi-inch high-quality perovskite single crystals for record performance photodetectors. Mater. Today 22, 67–75 (2019). doi: 10.1016/j.mattod.2018.04.002
[5] Fang, Y. J. et al. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics 9, 679–686 (2015). doi: 10.1038/nphoton.2015.156
[6] Yu, W. L. et al. Single crystal hybrid perovskite field-effect transistors. Nat. Commun. 9, 5354 (2018). doi: 10.1038/s41467-018-07706-9
[7] Li, F. et al. Ambipolar solution-processed hybrid perovskite phototransistors. Nat. Commun. 6, 8238 (2015). doi: 10.1038/ncomms9238
[8] Xie, C. et al. Ultrasensitive broadband phototransistors based on perovskite/organic-semiconductor vertical heterojunctions. Light Sci. Appl. 6, e17023 (2017). doi: 10.1038/lsa.2017.23
[9] Zhang, Q. et al. Advances in small perovskite-based lasers. Small Methods 1, 1700163 (2017). doi: 10.1002/smtd.201700163
[10] Li, P. F. et al. Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers. ACS Appl. Mater. Interfaces 9, 12759–12765 (2017). doi: 10.1021/acsami.7b01709
[11] Wang, N. N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics 10, 699–704 (2016). doi: 10.1038/nphoton.2016.185
[12] Cho, H. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015). doi: 10.1126/science.aad1818
[13] Huang, J. S. et al. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nature Reviews. Materials 2, 17042 (2017).
[14] Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015). doi: 10.1126/science.aaa2725
[15] Dong, Q. F. et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015). doi: 10.1126/science.aaa5760
[16] Huang, J. S., Shao, Y. C. & Dong, Q. F. Organometal trihalide perovskite single crystals: a next wave of materials for 25% efficiency photovoltaics and applications beyond? J. Phys. Chem. Lett. 6, 3218–3227 (2015). doi: 10.1021/acs.jpclett.5b01419
[17] Luo, D. Y. et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 360, 1442–1446 (2018). doi: 10.1126/science.aap9282
[18] Abdi-Jalebi, M. et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018). doi: 10.1038/nature25989
[19] Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019). doi: 10.1038/s41566-019-0398-2
[20] Zeng, Q. S. et al. Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V. Adv. Mater. 30, 1705393 (2018).
[21] Wang, Y. et al. Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies > 18%. Science 365, 591–595 (2019). doi: 10.1126/science.aav8680
[22] Bai, S. et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 571, 245–250 (2019). doi: 10.1038/s41586-019-1357-2
[23] Fang, H. H. et al. Photoluminescence enhancement in formamidinium lead iodide thin films. Adv. Funct. Mater. 26, 4653–4659 (2016). doi: 10.1002/adfm.201600715
[24] Lee, M. M. et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012). doi: 10.1126/science.1228604
[25] Motti, S. G. et al. Controlling competing photochemical reactions stabilizes perovskite solar cells. Nat. Photonics 13, 532–539 (2019).
[26] Yuan, Y. B. et al. Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells. Sci. Adv. 3, e1602164 (2017). doi: 10.1126/sciadv.1602164
[27] Xiao, Z. G. et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193–198 (2015). doi: 10.1038/nmat4150
[28] Yuan, M. J. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016). doi: 10.1038/nnano.2016.110
[29] Yi, H. T. et al. Electric-field effect on photoluminescence of lead-halide perovskites. Mater. Today 28, 31–39 (2019). doi: 10.1016/j.mattod.2019.01.003
[30] Fang, H. H. et al. Photoexcitation dynamics in solution-processed formamidinium lead iodide perovskite thin films for solar cell applications. Light Sci. Appl. 5, e16056 (2016). doi: 10.1038/lsa.2016.56
[31] Sarmah, S. P. et al. Double charged surface layers in lead halide perovskite crystals. Nano Lett. 17, 2021–2027 (2017). doi: 10.1021/acs.nanolett.7b00031
[32] Liu, Y. T. et al. Temperature-dependent photoluminescence spectra and decay dynamics of MAPbBr3 and MAPbI3 thin films. AIP Adv. 8, 095108 (2018). doi: 10.1063/1.5042489
[33] Sarritzu, V. et al. Perovskite excitonics: primary exciton creation and crossover from free carriers to a secondary exciton phase. Adv. Optic. Mater. 6, 1700839 (2017).
[34] Noel, N. K. et al. Enhanced photoluminescence and solar cell performance via lewis base passivation of organic-inorganic lead halide perovskites. ACS Nano 8, 9815–9821 (2014). doi: 10.1021/nn5036476
[35] Wang, Q. et al. Qualifying composition dependent p and n self-doping in CH3NH3PbI3. Appl. Phys. Lett. 105, 163508 (2014). doi: 10.1063/1.4899051
[36] Chen, B. et al. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842–3867 (2019). doi: 10.1039/C8CS00853A
[37] Guo, D. Y. et al. Photoluminescence from radiative surface states and excitons in methylammonium lead bromide perovskites. J. Phys. Chem. Lett. 8, 4258–4263 (2017). doi: 10.1021/acs.jpclett.7b01642
[38] Shi, T. T. et al. Unipolar self-doping behavior in perovskite CH3NH3PbBr3. Appl. Phys. Lett. 106, 103902 (2015). doi: 10.1063/1.4914544
[39] Song, D. D. et al. Managing carrier lifetime and doping property of lead halide perovskite by postannealing processes for highly efficient perovskite solar cells. J. Phys. Chem. C 119, 22812–22819 (2015). doi: 10.1021/acs.jpcc.5b06859
[40] Shkrob, I. A. & Marin, T. W. Charge trapping in photovoltaically active perovskites and related halogenoplumbate compounds. J. Phys. Chem. Lett. 5, 1066–1071 (2014). doi: 10.1021/jz5004022
[41] Fang, H. H. et al. Ultrahigh sensitivity of methylammonium lead tribromide perovskite single crystals to environmental gases. Sci. Adv. 2, e1600534 (2016). doi: 10.1126/sciadv.1600534
[42] Shao, Y. C. et al. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nature. Communications 5, 5784 (2014).
[43] Tian, Y. X. et al. Mechanistic insights into perovskite photoluminescence enhancement: light curing with oxygen can boost yield thousandfold. Phys. Chem. Chem. Phys. 17, 24978–24987 (2015). doi: 10.1039/C5CP04410C
[44] Zhang, Z. Y. et al. The role of trap-assisted recombination in luminescent properties of organometal halide CH3NH3PbBr3 perovskite films and quantum dots. Sci. Rep. 6, 27286 (2016). doi: 10.1038/srep27286
[45] Kang, M. H. et al. Synthesis of silver sulfide nanoparticles and their photodetector applications. RSC Adv. 8, 28447–28452 (2018). doi: 10.1039/C8RA03306D
[46] Zou, Y. T. et al. Anomalous ambipolar phototransistors based on all-inorganic CsPbBr3 perovskite at room temperature. Adv. Optic. Mater. 7, 1900676 (2019). doi: 10.1002/adom.201900676
[47] Saidaminov, M. I. et al. Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth. Chem. Commun. 51, 17658–17661 (2015). doi: 10.1039/C5CC06916E
[48] Saidaminov, M. I. et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 6, 7586 (2015). doi: 10.1038/ncomms8586
[49] Xing, J. et al. Dramatically enhanced photoluminescence from femtosecond laser induced micro-/nanostructures on MAPbBr3 single crystal surface. Adv. Optic. Mater. 6, 1800411 (2018). doi: 10.1002/adom.201800411
[50] Yin, T. T. et al. Hydrogen-bonding evolution during the polymorphic transformations in CH3NH3PbBr3: experiment and theory. Chem. Mater. 29, 5974–5981 (2017). doi: 10.1021/acs.chemmater.7b01630
[51] Lakowicz, J. R. Principles of Fluorescence Spectroscopy 3rd edn (Springer, Boston, MA, 2006).
[52] Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices 3rd edn (Wiley, New Jersey, 2006).
[53] Yang, Y. et al. Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal. Nature. Nat. Commun. 6, 7961 (2015).
[54] Zhao, X. M. et al. Memristors with organic-inorganic halide perovskites. InfoMat 1, 183–210 (2019).
[55] Dong, Q. F. et al. Lateral-structure single-crystal hybrid perovskite solar cells via piezoelectric poling. Adv. Mater. 28, 2816–2821 (2016). doi: 10.1002/adma.201505244
[56] Park, N. G., Grätzel, M. & Miyasaka, T. Organic-Inorganic Halide Perovskite Photovoltaics: From Fundamentals to Device Architectures (Springer, Cham, 2016).
[57] Xu, W. T. et al. Organometal halide perovskite artificial synapses. Adv. Mater. 28, 5916–5922 (2016). doi: 10.1002/adma.201506363
[58] Ma, C. et al. Sub-nanosecond memristor based on ferroelectric tunnel junction. Nat. Commun. 11, 1439 (2020). doi: 10.1038/s41467-020-15249-1
[59] Xiao, Z. G. & Huang, J. S. Energy-efficient hybrid perovskite memristors and synaptic devices. Adv. Electron. Mater. 2, 1600100 (2016). doi: 10.1002/aelm.201600100