[1] Shulaker, M. M. et al. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 547, 74-78 (2017). doi: 10.1038/nature22994
[2] Salahuddin, S., Ni, K. & Datta, S. The era of hyper-scaling in electronics. Nature Electronics 1, 442-450 (2018). doi: 10.1038/s41928-018-0117-x
[3] Choudhury, D. 3D integration technologies for emerging microsystems. Proceedings of 2010 IEEE MTT-S International Microwave Symposium. Anaheim, CA, USA: IEEE, 2010, 1.
[4] Nakamae, K. Electron microscopy in semiconductor inspection. Measurement Science and Technology 32, 052003 (2021). doi: 10.1088/1361-6501/abd96d
[5] Baek, K. et al. In situ TEM observation on the interface-type resistive switching by electrochemical redox reactions at a TiN/PCMO interface. Nanoscale 9, 582-593 (2017).
[6] Boye, C. et al. E-beam inspection for combination use of defect detection and CD measurement. Proceedings of 2012 SEMI Advanced Semiconductor Manufacturing Conference. Saratoga Springs, NY, USA: IEEE, 2012, 371-374.
[7] Semwogerere, D. & Weeks, E. R. Confocal microscopy. in Encyclopedia of Biomaterials and Biomedical Engineering (eds Wnek, G. & Bowlin, G. ) (Boca Raton: CRC Press, 2008), 1-10.
[8] Lee, S. & Yoo, H. A near-infrared confocal scanner. Measurement Science and Technology 25, 065403 (2014). doi: 10.1088/0957-0233/25/6/065403
[9] Kaderuppan, S. S. et al. Smart nanoscopy: a review of computational approaches to achieve super-resolved optical microscopy. IEEE Access 8, 214801-214831 (2020). doi: 10.1109/ACCESS.2020.3040319
[10] de Groot, P. Principles of interference microscopy for the measurement of surface topography. Advances in Optics and Photonics 7, 1-65 (2015). doi: 10.1364/AOP.7.000001
[11] Hase, E. et al. Scan-less confocal phase imaging based on dual-comb microscopy. Optica 5, 634-643 (2018). doi: 10.1364/OPTICA.5.000634
[12] Ishigaki, H. et al. Height measurement of solder bumps using two-wavelength parallel four-step phase shifting digital holography. Applied Optics 60, B8-B13 (2021). doi: 10.1364/AO.414941
[13] Kato, T., Uchida, M. & Minoshima, K. No-scanning 3D measurement method using ultrafast dimensional conversion with a chirped optical frequency comb. Scientific Reports 7, 3670 (2017). doi: 10.1038/s41598-017-03953-w
[14] Na, Y. et al. Ultrafast, sub-nanometre-precision and multifunctional time-of-flight detection. Nature Photonics 14, 355-360 (2020). doi: 10.1038/s41566-020-0586-0
[15] Kwon, S. et al. Microsphere-assisted, nanospot, non-destructive metrology for semiconductor devices. Light: Science & Applications 11, 32 (2022).
[16] Kwak, H. et al. Non-destructive thickness characterisation of 3D multilayer semiconductor devices using optical spectral measurements and machine learning. Light: Advanced Manufacturing 2, 9-19 (2021). doi: 10.37188/lam.2021.001
[17] Bianco, V. et al. Strategies for reducing speckle noise in digital holography. Light: Science & Applications 7, 48 (2018).
[18] Farrokhi, H. et al. High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers. Scientific Reports 7, 15318 (2017). doi: 10.1038/s41598-017-15553-9
[19] Jacobs, K. J. P. et al. Characterization of through-silicon vias using laser terahertz emission microscopy. Nature Electronics 4, 202-207 (2021). doi: 10.1038/s41928-021-00559-z
[20] Ma, J. Q. et al. Three-dimensional topography of high-aspect ratio trenches by sample-induced aberration-compensable coherence scanning interferometry. ACS Photonics 11, 1068-1077 (2024).
[21] Ahn, H. et al. A hybrid non-destructive measuring method of three-dimensional profile of through silicon vias for realization of smart devices. Scientific Reports 8, 15342 (2018). doi: 10.1038/s41598-018-33728-w
[22] Iff, W. A. et al. Electromagnetic analysis for optical coherence tomography based through silicon vias metrology. Applied Optics 58, 7472-7488 (2019). doi: 10.1364/AO.58.007472
[23] Gambino, J. P., Adderly, S. A. & Knickerbocker, J. U. An overview of through-silicon-via technology and manufacturing challenges. Microelectronic Engineering 135, 73-106 (2015). doi: 10.1016/j.mee.2014.10.019
[24] Schoeche, S. et al. Spectral interferometry for TSV metrology in chiplet technology. Proceedings of Metrology, Inspection, and Process Control XXXVIII. San Jose, CA, USA: SPIE, 2024, 129551O.
[25] Marx, D. et al. Wafer thickness sensor (WTS) for etch depth measurement of TSV. Proceedings of 2009 IEEE International Conference on 3D System Integration. San Francisco, CA, USA: IEEE, 2009, 1-5.
[26] Teh, W. H. et al. Backside infrared interferometric patterned wafer thickness sensing for through-silicon-via (TSV) etch metrology. IEEE Transactions on Semiconductor Manufacturing 23, 419-422 (2010). doi: 10.1109/TSM.2010.2046657
[27] Devanciard, N. et al. Through silicon via process characterization by integrated inspection/metrology solutions in visible and infrared domain. Proceedings of the 26th Annual SEMI Advanced Semiconductor Manufacturing Conference. Saratoga Springs, NY, USA: IEEE, 2015, 90-95.
[28] Jin, J. et al. Thickness and refractive index measurement of a silicon wafer based on an optical comb. Optics Express 18, 18339-18346 (2010). doi: 10.1364/OE.18.018339
[29] de Dood, M. J. A. et al. Amorphous silicon waveguides for microphotonics. Journal of Applied Physics 92, 649-653 (2002). doi: 10.1063/1.1486055
[30] Soref, R. A. & Larenzo, J. All-silicon active and passive guided-wave components for λ 5 =1.3 and1.6 μm. IEEE Journal of Quantum Electronics 22, 873-879 (1986).
[31] Laghla, Y. & Scheid, E. Optical study of undoped, B or P-doped polysilicon. Thin Solid Films 306, 67-73 (1997). doi: 10.1016/S0040-6090(97)00247-2
[32] Frey, B. J. , Leviton, D. B. & Madison, T. J. Temperature-dependent refractive index of silicon and germanium. Proceedings of Optomechanical Technologies for Astronomy. Orlando, FL, USA: SPIE, 2006, 62732J.
[33] Wang, Q. D. , Griesmann, U. & Polvani, R. Interferometric thickness calibration of 300 mm silicon wafers. Proceedings of ICO20: Optical Devices and Instruments. Changchun, China: SPIE, 2005, 602426.
[34] Francis, D., Ford, H. D. & Tatam, R. P. Spectrometer-based refractive index and dispersion measurement using low-coherence interferometry with confocal scanning. Optics Express 26, 3604-3617 (2018). doi: 10.1364/OE.26.003604
[35] Boettcher, T., Gronle, M. & Osten, W. Multi-layer topography measurement using a new hybrid single-shot technique: Chromatic Confocal Coherence Tomography (CCCT). Optics Express 25, 10204-10213 (2017). doi: 10.1364/OE.25.010204
[36] Chen, X. G. et al. A chromatic confocal probe with a mode-locked femtosecond laser source. Optics & Laser Technology 103, 359-366 (2018).
[37] Birch, K. P. & Downs, M. J. An updated Edlén equation for the refractive index of air. Metrologia 30, 155-162 (1993). doi: 10.1088/0026-1394/30/3/004
[38] Kwak, H. et al. 785-nm frequency comb-based time-of-flight detection for 3D surface profilometry of silicon devices. IEEE Photonics Journal 14, 3150908 (2022).
[39] Kumar, N. et al. Robust TSV via-middle and via-reveal process integration accomplished through characterization and management of sources of variation. Proceedings of 2012 IEEE 62nd Electronic Components and Technology Conference. San Diego, CA, USA: IEEE, 2012, 787-793.
[40] Taylor, H. K. et al. Characterizing and predicting spatial nonuniformity in the deep reactive ion etching of silicon. Journal of the Electrochemical Society 153, C575-C585 (2006). doi: 10.1149/1.2209570
[41] Tang, Y. M. et al. Ultra deep reactive ion etching of high aspect-ratio and thick silicon using a ramped-parameter process. Journal of Microelectromechanical Systems 27, 686-697 (2018). doi: 10.1109/JMEMS.2018.2843722
[42] Li, Y. J. et al. Profile control processes based on contact types in silicon wafer DSP manufacturing management. Proceedings of the Institution of Mechanical Engineers , 237, 1763-1773 (2023).
[43] Kim, J. & Song, Y. J. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications. Advances in Optics and Photonics 8, 465-540 (2016). doi: 10.1364/AOP.8.000465
[44] Marchand, P. J. et al. Soliton microcomb based spectral domain optical coherence tomography. Nature Communications 12, 427 (2021). doi: 10.1038/s41467-020-20404-9
[45] Zhang, J. Y. et al. Ultrabroadband integrated electro-optic frequency comb in lithium tantalate. Nature 637, 1096-1103 (2025). doi: 10.1038/s41586-024-08354-4
[46] Huang, D. M. et al. Reconfigurable time-stretched swept laser source with up to 100 MHz sweep rate, 100 nm bandwidth, and 100 mm OCT imaging range. Photonics Research 8, 1360-1367 (2020). doi: 10.1364/PRJ.390076
[47] Na, Y. et al. Massively parallel electro-optic sampling of space-encoded optical pulses for ultrafast multi-dimensional imaging. Light: Science & Applications 12, 44 (2023).
[48] Bresler, S. M. et al. GPU-enabled real-time optical frequency comb spectroscopy and a photonic readout. Optics Letters 48, 5887-5890 (2023). doi: 10.1364/OL.501847
[49] Che, F. X. et al. Development of wafer-level warpage and stress modeling methodology and its application in process optimization for TSV wafers. IEEE Transactions on Components, Packaging and Manufacturing Technology 2, 944-955 (2012). doi: 10.1109/TCPMT.2012.2192732
[50] Kim, S. et al. Simultaneous measurement of refractive index and thickness by combining low-coherence interferometry and confocal optics. Optics Express 16, 5516-5526 (2008). doi: 10.1364/OE.16.005516
[51] Joo, K. N. & Kim, S. W. Refractive index measurement by spectrally resolved interferometry using a femtosecond pulse laser. Optics Letters 32, 647-649 (2007). doi: 10.1364/OL.32.000647
[52] Decker, J. E. & Pekelsky, J. R. Uncertainty evaluation for the measurement of gauge blocks by optical interferometry. Metrologia 34, 479-493 (1997). doi: 10.1088/0026-1394/34/6/4