[1] Johnston, S. F. A historian's view of holography. in New Directions in Holography and Speckle. (eds Caulfield, H. J. and Vikram, C. S. ) (Valencia: American Scientific Publishers, 2008), 3–15.
[2] Gabor, D. A new microscopic principle. Nature 161, 777-778 (1948). doi: 10.1038/161777a0
[3] Leith, E. N. Holography. in The Optics Encyclopedia. (ed Brown, T. G. ) (Weinheim: Wiley-VCH, 2007), 773-800.
[4] Kreis, T. Handbook of Holographic Interferometry: Optical and Digital Methods. (Weinheim: Wiley-VCH, 2005).
[5] Hariharan, P. Optical Holography: Principles, Techniques and Applications. 2nd edn (Cambridge Cambridge University Press, 1996).
[6] Wernicke, G., and Osten, W. Holografische Interferometrie - Grundlagen, Methoden und ihre Anwendungen in der Festkörpermechanik. (Leipzig: VEB Fachbuchverlag, 1982).
[7] Zygo Corporation. Interferogram interpration and evaluation handbook. 4th edn. Applications note, (Middlefield: Zygo Corporation, 1977)
[8] Bryngdahl, O., and Lohmann, A. W. Interferograms are Image Holograms. Journal of the Optical Society of America 58, 141-142 (1968). doi: 10.1364/JOSA.58.000141
[9] Goodman, J. W. Analogy between Holography and Interferometric Image Formation. Journal of the Optical Society of America 60, 506-509 (1970). doi: 10.1364/JOSA.60.000506
[10] Malacara, D., Servín, M., and Malacara, Z. Phase Shifting Interferometry. in Interferogram Analysis for Optical Testing. 2nd edn (Boca Raton: CRC Press, 2005)
[11] Carré, P. Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures. Metrologia 2, 13-23 (1966). doi: 10.1088/0026-1394/2/1/005
[12] Waters, J. P. Holography. in Holographic Nondestructive Testing. (ed Erf, R. K. ) (New York: Academic Press, 1974), 5-59.
[13] Gabor, D., and Goss, W. P. Interference Microscope with Total Wavefront Reconstruction. Journal of the Optical Society of America 56, 849-858 (1966). doi: 10.1364/JOSA.56.000849
[14] Liu, J.-P., and Poon, T. -C. Two-step-only quadrature phase-shifting digital holography. Optics Letters 34, 250-252 (2009). doi: 10.1364/OL.34.000250
[15] Schack, R. V. Direct Phase-Sensing Interferometer. Journal of the Optical Society of America A 655A, MG14 (1971).
[16] Millerd, J. E. et al. Pixelated phase-mask dynamic interferometer. Proc. SPIE 5531, Interferometry XII: Techniques and Analysis. Denver, Colorado, United States: SPIE, 2004, 304-314.
[17] Wyant, J. C., Advances in Interferometric Metrology. Proc. SPIE 4927, Optical Design and Testing. Shanghai, China: SPIE, 2002, 154-162.
[18] Bruning, J. H. et al. Digital Wavefront Measuring Interferometer for Testing Optical Surfaces and Lenses. Applied Optics 13, 2693-2703 (1974). doi: 10.1364/AO.13.002693
[19] Morgan, C. J. Least-squares estimation in phase-measurement interferometry. Optics Letters 7, 368-370 (1982). doi: 10.1364/OL.7.000368
[20] Crane, R. New Developments in Interferometry: Interference Phase Measurement. Applied Optics 8, 538-542 (1969).
[21] Malacara, D., Servín, M., and Malacara, Z. Phase-Detection Algorithms. in Interferogram Analysis for Optical Testing. 2nd edn (Boca Raton: CRC Press, Taylor & Francis Group, 2005)
[22] de Groot, P. Phase Shifting Interferometry. in Optical Measurement of Surface Topography. (ed Leach, R. ) (Berlin: Springer Verlag, 2011), 167-186.
[23] Deck, L. L. Model-based phase shifting interferometry. Applied Optics 53, 4628-4636 (2014). doi: 10.1364/AO.53.004628
[24] Dändliker, R., Ineichen, B., and Mottier, F. M. High resolution hologram interferometry by electronic phase measurement. Optics Communications 9, 412-416 (1973). doi: 10.1016/0030-4018(73)90284-8
[25] Creath, K. Phase-shifting speckle interferometry. Applied Optics 24, 3053-3058 (1985). doi: 10.1364/AO.24.003053
[26] Stetson, K. A., 50 years of holographic interferometry. Proc. SPIE 9442, Optics and Measurement Conference 2014. SPIE, 2015, 11.
[27] Hariharan, P., Oreb, B. F., and Brown, N. A digital phase-measurement system for real-time holographic interferometry. Optics Communications 41, 393-396 (1982). doi: 10.1016/0030-4018(82)90163-8
[28] Ghiglia, D. C., and Pritt, M. D. Two-Dimensional Phase Unwrapping, Theory, Algorithms, and Software. (New York: John Wiley & Sons, 1998).
[29] Leith, E. N., and Upatnieks, J. Reconstructed Wavefronts and Communication Theory*. Journal of the Optical Society of America 52, 1123-1130 (1962). doi: 10.1364/JOSA.52.001123
[30] Lohmann, A. Optische Einseitenbandübertragung Angewandt auf das Gabor-Mikroskop. Optica Acta:International Journal of Optics 3, 97-99 (1956). doi: 10.1080/713823636
[31] Roddier, C., and Roddier, F. Interferogram analysis using Fourier transform techniques. Applied Optics 26, 1668-1673 (1987). doi: 10.1364/AO.26.001668
[32] Bone, D. J. Fourier fringe analysis: the two-dimensional phase unwrapping problem. Applied Optics 30, 3627-3632 (1991). doi: 10.1364/AO.30.003627
[33] Kujawinska, M., Spik, A., and Wojciak, J., Fringe Pattern Analysis Using Fourier Transform Techniques. Proc. SPIE 1121, Interferometry '89. Warsaw: 1990, 130-135.
[34] Mertz, L. Real-time fringe-pattern analysis. Applied Optics 22, 1535-1539 (1983). doi: 10.1364/AO.22.001535
[35] Freischlad, K. et al. Real-time wavefront measurement with lambda/10 fringe spacing for the optical shop. Proc. SPIE 1332, Optical Testing and Metrology III: Recent Advances in Industrial Optical Inspection. San Diego, CA, United States: SPIE, 1991,
[36] Deck, L. L., Environmentally friendly interferometry. Proc. SPIE 5532, Interferometry XII: Applications. Denver, Colorado, United States: SPIE, 2004, 159-169.
[37] Goodman, J. W. Introduction to Fourier Optics. 4th edn (New York: W. H. Freeman Macmillan Learning, 2017).
[38] Goodman, J. W. Introduction to Fourier Optics. 2nd edn (New York: McGraw-Hill, 1996).
[39] Maiman, T. H. Stimulated Optical Radiation in Ruby. Nature 187, 493-494 (1960). doi: 10.1038/187493a0
[40] Leith, E. N., and Upatnieks, J. Wavefront Reconstruction with Continuous-Tone Objects. Journal of the Optical Society of America 53, 1377-1381 (1963). doi: 10.1364/JOSA.53.001377
[41] Reynolds, G. O. et al. Sources of Coherent Noise and Their Reduction. in The New Physical Optics Notebook: Tutorials in Fourier Optics. (eds Parrent, G. B. and Reynolds, G. O. ) (Bellingham, Washington: SPIE Optical engineering press, 1989), 199-219.
[42] Leith, E. N. 1 - Introduction. in Handbook of Optical Holography. (ed Caulfield, H. J. ) (San Diego: Academic Press, 1979), 1-12.
[43] Kirkpatrick, P., and El-Sum, H. M. A. Image Formation by Reconstructed Wave Fronts I Physical Principles and Methods of Refinement. Journal of the Optical Society of America 46, 825-831 (1956). doi: 10.1364/JOSA.46.000825
[44] Martienssen, W., and Spiller, S. Holographic reconstruction without granulation. Physics Letters A 24, 126-128 (1967). doi: 10.1016/0375-9601(67)90517-8
[45] Thomas, C. E. Coherent Optical Noise Suppression. Applied Optics 7, 517-522 (1968). doi: 10.1364/AO.7.000517
[46] Close, D. H. High Resolution Portable Holocamera. Applied Optics 11, 376-383 (1972). doi: 10.1364/AO.11.000376
[47] Cronin, D. J., Pinard, A. I., and Smith, A. E. Coherent optical system with expanded bandwidth and noise suppression. US Patent 3, 770, 340 (1973).
[48] Pawluczyk, R. Holographic microinterferometer with noise suppression. Applied Optics 28, 3871-3881 (1989). doi: 10.1364/AO.28.003871
[49] McKechnie, T. S. Speckle Reduction. in Laser Speckle and Related Phenomena. (ed Dainty, J. C. ) (Berlin, Heidelberg: Springer, 1975), 123-170.
[50] Houston, J. B., Buccini, C. J., and O'Neill, P. K. A Laser Unequal Path Interferometer for the Optical Shop. Applied Optics 6, 1237-1242 (1967). doi: 10.1364/AO.6.001237
[51] de Groot, P. J., Applications of optical coherence in interferometric metrology. Proc. SPIE 10834, Speckle 2018: VII International Conference on Speckle Metrology. Janów Podlaski, Poland: SPIE, 2018, 108340.
[52] Freischlad, K. R., and Kuechel, M. F., Speckle reduction by virtual spatial coherence. Proc. SPIE 1755, Interferometry: Techniques and Analysis. San Diego, California, United States: SPIE, 1992, 38-43.
[53] Zygo Corporation. Coherent artifact reduction system. AN-0065 edn. Application note, (Middlefield: Zygo Corporation, 2014)
[54] Takeda, M., Ina, H., and Kobayashi, S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. Journal of the Optical Society of America 72, 156-160 (1982). doi: 10.1364/JOSA.72.000156
[55] Sykora, D. M., and de Groot, P., Instantaneous Interferometry: Another View. OSA Technical Digest, International Optical Design Conference and Optical Fabrication and Testing. Jackson Hole, Wyoming, United States: Optical Society of America, 2010, OMA1.
[56] Freischlad, K. Interferometer light source. US Patent 6061133 (2000).
[57] Küchel, M., Spatial Coherence in Interferometry: Zygo's new method to reduce intrinsic noise in interferometers. Proc. Optatec, International trade fair for optical technologies, components and systems. Frankfurt, Germany: P. E. Schall GmbH & Co., 2004,
[58] Domeniacali, P. L., and Hunter, G. C. Optical interferometer system with CCTV camera for measuring a wide range of aperture sizes. US Patent 4, 201, 473 (1980).
[59] Deck, L. L., and de Groot, P. J., Using the Instrument Transfer Function to Evaluate Fizeau Interferometer Performance. OSA Technical Digest, Optical Design and Fabrication 2017 (Freeform, IODC, OFT). Denver, Colorado, United States: Optical Society of America, 2017, OM2B. 7.
[60] Trolinger, J. D., Is holography ready for yet another life? or make holography great again. Proc. SPIE 9960, Interferometry XVIII. San Diego, California, United States: SPIE, 2016, 996008.
[61] Goodman, J. W., and Lawrence, R. W. Digital Image Formation from Electronically Detected Holograms. Applied Physics Letters 11, 77-79 (1967). doi: 10.1063/1.1755043
[62] Wu, Y. C., and Ozcan, A. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring. Methods 136, 4-16 (2018). doi: 10.1016/j.ymeth.2017.08.013
[63] Colomb, T., and Kühn, J. Digital Holographic Microscopy. in Optical Measurement of Surface Topography. (ed Leach, R. ) (Berlin Heidelberg: Springer, 2011), 209-235.
[64] ISO 25178-600: 2019, Geometrical product specifications (GPS) — Surface texture: Areal — Part 600: Metrological characteristics for areal-topography measuring methods. Geneva: International Organization for Standardization (2019).
[65] de Groot, P. J., Progress in the specification of optical instruments for the measurement of surface form and texture. Proc. SPIE 9110, Dimensional Optical Metrology and Inspection for Practical Applications III. Baltimore, Maryland, United States: SPIE, 2014, 91100M.
[66] de Groot, P. et al. , Fourier optics modelling of coherence scanning interferometers. Proc. SPIE 11817, Applied Optical Metrology IV. San Diego, California, United States: SPIE, 2021, 118170M.
[67] de Groot, P. J. The instrument transfer function for optical measurements of surface topography. Journal of Physics:Photonics 3, 024004 (2021). doi: 10.1088/2515-7647/abe3da
[68] Deck, L. L. Method and apparatus for optimizing the optical performance of interferometers. US Patent 10267617 (2019).
[69] Deck, L. L., Absolute distance measurements using FTPSI with a widely tunable IR laser. Proc. SPIE 4778, Interferometry XI: Applications. Seattle, WA, United States: SPIE, 2002, 218-226.
[70] Deck, L. L. Fourier-transform phase-shifting interferometry. Applied Optics 42, 2354-2365 (2003). doi: 10.1364/AO.42.002354
[71] Deck, L. L., and de Groot, P. J., The state of the art in swept-wavelength laser Fizeau interferometry. Proc. SPIE 11817, SPIE Optical Engineering + Applications. SPIE, 2021, 118170N.
[72] Deck, L. L. Interferometric method and apparatus using calibration information relating a focus setting to a test object position. US Patent 10890428 (2021).
[73] Newton, I. Opticks or, a Treatise of the Reflections, Refractions, Inflections, and Colours of Light. 4th edn (London: S. Smith and B. Walford, 1704).
[74] Wood, R. W. Physical Optics. (New York: MacMillan, 1911).
[75] Johnston, S. F. From white elephant to Nobel Prize: Dennis Gabor's wavefront reconstruction. Historical Studies in the Physical and Biological Sciences 36, 35-70 (2005). doi: 10.1525/hsps.2005.36.1.35
[76] Rogers, G. L. Gabor Diffraction Microscopy: the Hologram as a Generalized Zone-Plate. Nature 166, 237-237 (1950).
[77] Rayleigh, L. Wave Theory. in Encylopaedia Brittanica vol 24. 9th edn (New York: Henry G. Allen and Company, 1888), 421-458.
[78] Fresnel, A. J. Calcul de l'intensité de la lumière au centre de l'ombre d'un ecran et d'une ouverture circulaires eclairés par un point radieux. in Œuvres Complètes d'Augustin Fresnel. (Paris: Imprimerie Impériale, 1866)
[79] Twyman, F. VI. Interferometers for the experimental study of optical systems from the point of view of the wave theory. Philosophical Magazine 35, 49-58 (1918).
[80] Malacara, D. et al. Testing of Aspheric Wavefronts and Surfaces. in Optical Shop Testing. 3rd edn (ed Malacara, D. ) (Hoboken: John Wiley & Sons, Inc., 2007), 435-497.
[81] Lohmann, A. W. A Pre-History of Computer-Generated Holography. Optics and Photonics News 19, 36-47 (2008).
[82] Pastor, J. New Developments in Interferometry, Part III: Hologram Interferometry and Optical Technology. Applied Optics 8, 525-531 (1969).
[83] Wyant, J. C., and Bennett, V. P. Using Computer Generated Holograms to Test Aspheric Wavefronts. Applied Optics 11, 2833-2839 (1972). doi: 10.1364/AO.11.002833
[84] Schwider, J., and Burow, R. Testing of aspherics by means of rotational-symmetric synthetic holograms. Optica Applicata 6, 83-88 (1976).
[85] Lee, W. -H. III Computer-Generated Holograms: Techniques and Applications. in Progress in Optics vol 16. (ed Wolf, E. ) (Amsterdam: Elsevier, 1978), 119-232.
[86] Pruss, C. et al. Computer-generated holograms in interferometric testing. Optical Engineering 43, 2534-2540 (2004). doi: 10.1117/1.1804544
[87] Glatzel, H. et al. Projection optics for EUVL micro-field exposure tools with 0.5 NA. Proc. SPIE 9048, Extreme Ultraviolet (EUV) Lithography V. San Jose, California, United States: 2014, 90481K.
[88] Küchel, M. F., Interferometric measurement of rotationally symmetric aspheric surfaces. Proc. SPIE 7389, Optical Measurement Systems for Industrial Inspection VI. Munich, Germany: SPIE, 2009, 738916.
[89] Pruss, C. et al. Measuring aspheres quickly: tilted wave interferometry. Optical Engineering 56, 111713 (2017). doi: 10.1117/1.OE.56.11.111713
[90] Berger, G., and Petter, J., Non-contact metrology of aspheric surfaces based on MWLI technology. Proc. SPIE 8884, Optifab 2013. Rochester, New York, United States: 2013, 8884V.
[91] Georges, M. Chapter 6 - Holographic Interferometry: From History to Modern Applications. in Optical Holography. (ed Blanche, P. -A. ) Elsevier, 2020), 121-163.
[92] Stetson, K. A. The discovery of holographic interferometry, its development and applications (accepted for publication). Light: Advanced Manufacturing, (2021).
[93] Stetson, K. A., and Powell, R. L. Interferometric Hologram Evaluation and Real-Time Vibration Analysis of Diffuse Objects. Journal of the Optical Society of America 55, 1694-1695 (1965). doi: 10.1364/JOSA.55.001694
[94] Haines, K. A., and Hildebrand, B. P. Surface-Deformation Measurement Using the Wavefront Reconstruction Technique. Applied Optics 5, 595-602 (1966). doi: 10.1364/AO.5.000595
[95] Kim, M. K. et al. Digital Holography and 3D Imaging: introduction. Applied Optics 53, DH1 (2014). doi: 10.1364/AO.53.000DH1
[96] Nehmetallah, G., and Banerjee, P. P. Applications of digital and analog holography in three-dimensional imaging. Advances in Optics and Photonics 4, 472-553 (2012). doi: 10.1364/AOP.4.000472
[97] Vest, C. M. Holographic Interferometry. (New York: Wiley-Interscience, 1979).
[98] Abramson, N. H., Bjelkhagen, H., and Cooke, F. Industrial Holographic Measurements. Applied Optics 12, 2792-2796 (1973). doi: 10.1364/AO.12.002792
[99] Heflinger, L. O., Wuerker, R. F., and Brooks, R. E. Holographic Interferometry. Journal of Applied Physics 37, 642-649 (1966). doi: 10.1063/1.1708231
[100] Collier, R. J., Doherty, E. T., and Pennington, K. S. Application of moiré techniques to holography. Applied Physics Letters 7, 223-225 (1965). doi: 10.1063/1.1754388
[101] Powell, R. L., and Stetson, K. A. Interferometric Vibration Analysis by Wavefront Reconstruction. Journal of the Optical Society of America 55, 1593-1598 (1965). doi: 10.1364/JOSA.55.001593
[102] Osterberg, H. An Interferometer Method of Studying the Vibrations of an Oscillating Quartz Plate. Journal of the Optical Society of America 22, 19-35 (1932). doi: 10.1364/JOSA.22.000019
[103] Polhemus, C. Two-Wavelength Interferometry. Applied Optics 12, 2071-2074 (1973). doi: 10.1364/AO.12.002071
[104] Bosseboeuf, A., and Petitgrand, S., Application of microscopic interferometry techniques in the MEMS field. Proc. SPIE 5145, Microsystems Engineering: Metrology and Inspection III. Munich, Germany: SPIE, 2003, 1-16.
[105] Patorski, K. et al. Simplified time-averaged digital interferometry for vibration studies of microelements. Proc. SPIE 4933, Speckle Metrology. Trondheim, Norway: SPIE, 2003,
[106] Dresel, T., Häusler, G., and Venzke, H. Three-dimensional sensing of rough surfaces by coherence radar. Applied Optics 31, 919-925 (1992). doi: 10.1364/AO.31.000919
[107] de Groot, P. Principles of interference microscopy for the measurement of surface topography. Advances in Optics and Photonics 7, 1-65 (2015). doi: 10.1364/AOP.7.000001
[108] Haneishi, H. Signal processing for film thickness measurements by white light interferometry. Ph. D. Thesis, University of Electro-communications, Chofu, Tokyo, (1984).
[109] de Groot, P., and Deck, L. Surface Profiling by Analysis of White-light Interferograms in the Spatial Frequency Domain. Journal of Modern Optics 42, 389-401 (1995). doi: 10.1080/09500349514550341
[110] de Groot, P., and Colonna de Lega, X. Fourier optics modeling of interference microscopes. J. Opt. Soc. Am. A 37, B1-B10 (2020). doi: 10.1364/JOSAA.390746
[111] Voelz, D. G. Computational Fourier Optics: A MATLAB Tutorial. (Bellingham: SPIE Press, 2011).
[112] Frieden, B. R. Optical Transfer of the Three-Dimensional Object. Journal of the Optical Society of America 57, 56-66 (1967). doi: 10.1364/JOSA.57.000056
[113] Mantravadi, M. V., and Malacara, D. Newton, Fizeau, and Haidinger Interferometers. in Optical Shop Testing. 3rd edn (ed Malacara, D. ) (Hoboken: Wiley-Interscience, 2007), 1-45.
[114] Wolf, E. Determination of the Amplitude and the Phase of Scattered Fields by Holography*. Journal of the Optical Society of America 60, 18-20 (1970). doi: 10.1364/JOSA.60.000018
[115] Wolf, E. Three-dimensional structure determination of semi-transparent objects from holographic data. Optics Communications 1, 153-156 (1969). doi: 10.1016/0030-4018(69)90052-2
[116] Dändliker, R., and Weiss, K. Reconstruction of the three-dimensional refractive index from scattered waves. Optics Communications 1, 323-328 (1970). doi: 10.1016/0030-4018(70)90032-5
[117] Kim, M. K. Digital Holographic Microscopy: Principles, Techniques, and Applications. (New York: Springer, 2011).
[118] Kou, S. S., and Sheppard, C. J. R. Imaging in digital holographic microscopy. Optics Express 15, 13640-13648 (2007). doi: 10.1364/OE.15.013640
[119] Popescu, G. Principles of Biophotonics, Volume 1: Linear systems and the Fourier transform in optics. (Bristol: IOP Publishing, 2018).
[120] ChmelÍk, R. Three-dimensional scalar imaging in high-aperture low-coherence interference and holographic microscopes. Journal of Modern Optics 53, 2673-2689 (2006). doi: 10.1080/09500340600828541
[121] Sheppard, C. J. R. Imaging of random surfaces and inverse scattering in the Kirchoff approximation. Waves in Random Media 8, 53-66 (1998).
[122] Sheppard, C. J. R., and Matthews, H. J. Imaging in high-aperture optical systems. Journal of the Optical Society of America A 4, 1354-1360 (1987). doi: 10.1364/JOSAA.4.001354
[123] Sheppard, C. J. R., and Cogswell, C. J. Three‐dimensional image formation in confocal microscopy. Journal of Microscopy 159, 179-194 (1990). doi: 10.1111/j.1365-2818.1990.tb04774.x
[124] Chakmakjian, S., Biegen, J. F., and de Groot, P., Simultaneous focus and coherence scanning in interference microscopy. IWI Proceedings, International Workshop on Interferometry. Wako, Saitama, Japan: RIKEN, 1996, 171-172.
[125] Coupland, J. et al. Coherence scanning interferometry: linear theory of surface measurement. Applied Optics 52, 3662-3670 (2013). doi: 10.1364/AO.52.003662
[126] Su, R. et al. On tilt and curvature dependent errors and the calibration of coherence scanning interferometry. Optics Express 25, 3297-3310 (2017). doi: 10.1364/OE.25.003297
[127] Su, R. et al. Effects of defocus on the transfer function of coherence scanning interferometry. Optics Letters 43, 82-85 (2018). doi: 10.1364/OL.43.000082
[128] Thomas, M. et al. Surface measuring coherence scanning interferometry beyond the specular reflection limit. Optics Express 29, 36121-36131 (2021). doi: 10.1364/OE.435715
[129] Su, R. et al. Lens aberration compensation in interference microscopy. Optics and Lasers in Engineering 128, 106015 (2020). doi: 10.1016/j.optlaseng.2020.106015
[130] Su, R. et al. Scattering and three-dimensional imaging in surface-topography measuring interference microscopy. Journal of the Optical Society of America A 38, 27-42 (2020).
[131] Zhou, K. C. et al. Unified k-space theory of optical coherence tomography. Advances in Optics and Photonics 13, 462-514 (2021). doi: 10.1364/AOP.417102
[132] Reynolds, G. O. et al. Division of Amplitude Interferometry. in The New Physical Optics Notebook: Tutorials in Fourier Optics. (eds Parrent, G. B. and Reynolds, G. O. ) (Bellingham: Optical Engineering Press, 1989), 242-263.
[133] Itoh, K., and Ohtsuka, Y. Interferometric image reconstruction through the turbulent atmosphere. Applied Optics 20, 4239-4244 (1981). doi: 10.1364/AO.20.004239
[134] de Groot, P., Holography: Just a fancy word for interferometry? Proc. OSA Digital Holography & 3-D Imaging, Digital Holography and Three0Dimensional Imaging. Heidelberg, Germany: Optical Society of America, 2016, DM3I. 1.