[1] Newton, I. A letter of Mr. Isaac Newton, Professor of the Mathematicks in the University of Cambridge; containing his new theory about light and colors: sent by the author to the publisher from Cambridge, Febr. 6. 1671/72; in order to be communicated to the R. Society. Philos. Trans. R. Soc. 6, 3075–3087 (1671).
[2] Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. 7th edn (Cambridge University Press, Cambridge, 1999).
[3] Goodman, J. W. Introduction to Fourier Optics. 3rd edn (Roberts and Company Publishers, Englewood, CO, 2005).
[4] Stone, T. & George, N. Hybrid diffractive-refractive lenses and achromats. Appl. Opt. 27, 2960–2971 (1988). doi: 10.1364/AO.27.002960
[5] Astilean, S. et al. High-efficiency subwavelength diffractive element patterned in a high-refractive-index material for 633 nm. Opt. Lett. 23, 552–554 (1998). doi: 10.1364/OL.23.000552
[6] Aieta, F. et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015). doi: 10.1126/science.aaa2494
[7] Arbabi, E. et al. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica 3, 628–633 (2016). doi: 10.1364/OPTICA.3.000628
[8] Arbabi, E. et al. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica 4, 625–632 (2017). doi: 10.1364/OPTICA.4.000625
[9] Nagar, J., Campbell, S. D. & Werner, D. H. Apochromatic singlets enabled by metasurface-augmented GRIN lenses. Optica 5, 99–102 (2018). doi: 10.1364/OPTICA.5.000099
[10] Colburn, S., Zhan, A. & Majumdar, A. Metasurface optics for full-color computational imaging. Sci. Adv. 4, eaar2114 (2018). doi: 10.1126/sciadv.aar2114
[11] Wang, S. M. et al. Broadband achromatic optical metasurface devices. Nat. Commun. 8, 187 (2017). doi: 10.1038/s41467-017-00166-7
[12] Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2018). doi: 10.1038/s41565-017-0034-6
[13] Wang, S. M. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227–232 (2018). doi: 10.1038/s41565-017-0052-4
[14] Chen, W. T. et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun. 10, 355 (2019). doi: 10.1038/s41467-019-08305-y
[15] Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013). doi: 10.1126/science.1232009
[16] Yu, N. F. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014). doi: 10.1038/nmat3839
[17] Lin, D. M. et al. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014). doi: 10.1126/science.1253213
[18] Estakhri, N. M. & Alù, A. Recent progress in gradient metasurfaces. J. Opt. Soc. Am. B 33, A21–A30 (2016). doi: 10.1364/JOSAB.33.000A21
[19] Ding, F. et al. A review of gap-surface plasmon metasurfaces: fundamentals and applications. Nanophotonics 7, 1129–1156 (2018). doi: 10.1515/nanoph-2017-0125
[20] Kamali, S. M. et al. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics 7, 1041–1068 (2018). doi: 10.1515/nanoph-2017-0129
[21] Arbabi, A. et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015). doi: 10.1038/nnano.2015.186
[22] Kuznetsov, A. I. et al. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016). doi: 10.1126/science.aag2472
[23] Kruk, S. & Kivshar, Y. Functional meta-optics and nanophotonics governed by Mie resonances. ACS Photonics 4, 2638–2649 (2017). doi: 10.1021/acsphotonics.7b01038
[24] Henstridge, M. et al. Accelerating light with metasurfaces. Optica 5, 678–681 (2018). doi: 10.1364/OPTICA.5.000678
[25] Neder, V. et al. Combined metagratings for efficient broad-angle scattering metasurface. ACS Photonics 6, 1010–1017 (2019). doi: 10.1021/acsphotonics.8b01795
[26] Arbabi, A. et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun. 7, 13682 (2016). doi: 10.1038/ncomms13682
[27] Faraji-Dana, M. S. et al. Compact folded metasurface spectrometer. Nat. Commun. 9, 4196 (2018). doi: 10.1038/s41467-018-06495-5
[28] Pahlevaninezhad, H. et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photonics 12, 540–547 (2018). doi: 10.1038/s41566-018-0224-2
[29] Li, B., Piyawattanametha, W. & Qiu, Z. Metalens-based miniaturized optical systems. Micromachines 10, 310 (2019). doi: 10.3390/mi10050310
[30] Buralli, D. A. & Rogers, J. R. Some fundamental limitations of achromatic holographic systems. J. Optical Soc. Am. A 6, 1863–1868 (1989). doi: 10.1364/JOSAA.6.001863
[31] Avayu, O. et al. Composite functional metasurfaces for multispectral achromatic optics. Nat. Commun. 8, 14992 (2017). doi: 10.1038/ncomms14992
[32] Chen, W. T. et al. Broadband achromatic metasurface-refractive optics. Nano Lett. 18, 7801–7808 (2018). doi: 10.1021/acs.nanolett.8b03567
[33] Lukosz, W. Optical systems with resolving powers exceeding the classical limit. II. J. Optical Soc. Am. 57, 932–941 (1967).
[34] Lohmann, A. W. et al. Space–bandwidth product of optical signals and systems. J. Optical Soc. Am. A 13, 470–473 (1996). doi: 10.1364/JOSAA.13.000470
[35] Giovannini, D. et al. Spatially structured photons that travel in free space slower than the speed of light. Science 347, 857–860 (2015). doi: 10.1126/science.aaa3035
[36] Campbell, S. D. et al. Review of numerical optimization techniques for meta-device design [Invited]. Opt. Mater. Express 9, 1842–1863 (2019). doi: 10.1364/OME.9.001842
[37] Liu, V. & Fan, S. H. S4: a free electromagnetic solver for layered periodic structures. Comput. Phys. Commun. 183, 2233–2244 (2012). doi: 10.1016/j.cpc.2012.04.026
[38] Kamali, S. M. et al. Highly tunable elastic dielectric metasurface lenses. Laser Photonics Rev. 10, 1002–1008 (2016). doi: 10.1002/lpor.201600144
[39] Oskooi, A. F. et al. Meep: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181, 687–702 (2010). doi: 10.1016/j.cpc.2009.11.008