[1] Helander, P. et al. Stellarator and tokamak plasmas: a comparison. Plasma Phys. Control. Fusion 54, 124009 (2012). doi: 10.1088/0741-3335/54/12/124009
[2] Li, Z. et al. Experimental investigation of Z-pinch radiation source for indirect drive inertial confinement fusion. Matter Radiat. Extrem 4, 046201 (2019). doi: 10.1063/1.5099088
[3] Rohringer, N. et al. Atomic inner-shell X-ray laser at 1.46 nanometres pumped by an X-ray free-electron laser. Nature 481, 488-491 (2012). doi: 10.1038/nature10721
[4] Yoneda, H. et al. Atomic inner-shell laser at 1.5-ångström wavelength pumped by an X-ray free-electron laser. Nature 524, 446-449 (2015). doi: 10.1038/nature14894
[5] Depresseux, A. et al. Table-top femtosecond soft X-ray laser by collisional ionization gating. Nat. Photonics 9, 817-821 (2015). doi: 10.1038/nphoton.2015.225
[6] Zürch, M. et al. Transverse coherence limited coherent diffraction imaging using a molybdenum soft X-ray laser pumped at moderate pump energies. Sci. Rep. 7, 5314 (2017). doi: 10.1038/s41598-017-05789-w
[7] Spielmann, C. H. et al. Generation of coherent X-rays in the water window using 5-femtosecond laser pulses. Science 278, 661 (1997). doi: 10.1126/science.278.5338.661
[8] Cayzac, W. et al. Experimental discrimination of ion stopping models near the Bragg peak in highly ionized matter. Nat. Commun. 8, 1-7 (2017). doi: 10.1038/ncomms15693
[9] Vinko, S. M. et al. Investigation of femtosecond collisional ionization rates in a solid-density aluminium plasma. Nat. Commun. 6, 1-7 (2015). doi: 10.1038/ncomms7397
[10] He, Z.-H. et al. Coherent control of plasma dynamics. Nat. Commun. 6, 7156 (2015). doi: 10.1038/ncomms8156
[11] Sullivan, J. V. & Walsh, A. High intensity hollow-cathode lamps. Spectrochim. Acta 21, 721-726 (1965). doi: 10.1016/0371-1951(65)80027-3
[12] Wagner, C. & Harned, N. Lithography gets extreme. Nat. Photonics 4, 24-26 (2010). doi: 10.1038/nphoton.2009.251
[13] Legall, H. et al. Compact X-ray microscope for the water window based on a high brightness laser plasma source. Opt. Express 20, 18362-18369 (2012). doi: 10.1364/OE.20.018362
[14] Silfvast, W. T. Intense EUV incoherent plasma sources for EUV lithography and other applications. IEEE J. Quantum Electron 35, 700-708 (1999). doi: 10.1109/3.760316
[15] Schmitz, C. et al. Compact extreme ultraviolet source for laboratory-based photoemission spectromicroscopy. Appl. Phys. Lett. 108, 234101 (2016). doi: 10.1063/1.4953071
[16] Thibault, P., Dierolf, M., Bunk, O., Menzel, A. & Pfeiffer, F. Probe retrieval in ptychographic coherent diffractive imaging. Ultramicroscopy 109, 338-343 (2009). doi: 10.1016/j.ultramic.2008.12.011
[17] Sebban, S. et al. Demonstration of a Ni-like Kr optical-field-ionization collisional soft X-Ray laser at 32.8 nm. Phys. Rev. Lett. 89, 253901 (2002).
[18] Maiden, A. M. & Rodenburg, J. M. An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 109, 1256-1262 (2009). doi: 10.1016/j.ultramic.2009.05.012
[19] Vartanyants, I. A. et al. Coherence properties of individual femtosecond pulses of an X-ray free-electron laser. Phys. Rev. Lett. 107, 144801 (2011). doi: 10.1103/PhysRevLett.107.144801
[20] Oliva, E. et al. Hydrodynamic evolution of plasma waveguides for soft-x-ray amplifiers. Phys. Rev. E 97, 023203 (2018). doi: 10.1103/PhysRevE.97.023203
[21] Oliva, E. et al. DAGON: a 3D Maxwell-Bloch code. In SPIE Proceedings Volume 10243, X-ray Lasers and Coherent X-ray Sources: Development and Applications (eds. Klisnick, A. & Menoni, C. S.) (SPIE, 2017).
[22] Cros, B. et al. Characterization of the collisionally pumped optical-field-ionized soft-x-ray laser at 41.8 nm driven in capillary tubes. Phys. Rev. A 73, 033801 (2006). doi: 10.1103/PhysRevA.73.033801
[23] Oliva, E. et al. Self-regulated propagation of intense infrared pulses in elongated soft-x-ray plasma amplifiers. Phys. Rev. A 92, 023848 (2015). doi: 10.1103/PhysRevA.92.023848
[24] Paradkar, B. S., Cros, B., Mora, P. & Maynard, G. Numerical modeling of multi-GeV laser wakefield electron acceleration inside a dielectric capillary tube. Phys. Plasmas 20, 083120 (2013). doi: 10.1063/1.4819718
[25] Lifschitz, A. F. et al. Particle-in-cell modelling of laser-plasma interaction using Fourier decomposition. J. Comput. Phys. 228, 1803-1814 (2009). doi: 10.1016/j.jcp.2008.11.017
[26] Ogando, F. & Velarde, P. Development of a radiation transport fluid dynamic code under AMR scheme. J. Quant. Spectrosc. Radiat. Transf. 71, 541-550 (2001). doi: 10.1016/S0022-4073(01)00096-6
[27] Carlström, S., Mauritsson, J., Schafer, K. J., L'Huillier, A. & Gisselbrecht, M. Quantum coherence in photo-ionisation with tailored XUV pulses. J. Phys. B. Mol. Opt. Phys. 51, 015201 (2017). doi: 10.1088/1361-6455/aa96e7
[28] Wituschek, A. et al. Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses. Nat. Commun. 11, 1-7 (2020). doi: 10.1038/s41467-020-14721-2
[29] Loriot, V. et al. Resolving XUV induced femtosecond and attosecond dynamics in polyatomic molecules with a compact attosecond beamline. J. Phys. Conf. Ser. 635, 012006 (2015). doi: 10.1088/1742-6596/635/1/012006
[30] Durfee, C. G., Lynch, J. & Milchberg, H. M. Development of a plasma waveguide for high-intensity laser pulses. Phys. Rev. E 51, 2368-2389 (1995). doi: 10.1103/PhysRevE.51.2368
[31] Zeitoun, P. et al. A high-intensity highly coherent soft X-ray femtosecond laser seeded by a high harmonic beam. Nature 431, 426-429 (2004). doi: 10.1038/nature02883
[32] Fienup, J. Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support contraint. Opt. Soc. Am. 4, 521-553 (1987).
[33] Jaeglé, P. Coherent Sources of XUV Radiation (Springer International Publishing, 2006).