[1] Giovannetti V, Lloyd S, Maccone L. Quantum-enhanced measurements: beating the standard quantum limit. Science 2004; 306: 1330–1336. doi: 10.1126/science.1104149
[2] Walther P, Pan J-W, Aspelmeyer M, Ursin R, Gasparoni S et al. De Broglie wavelength of a non-local four-photon state. Nature 2004; 429: 158–161. doi: 10.1038/nature02552
[3] Mitchell MW, Lundeen JS, Steinberg AM. Super-resolving phase measurements with a multiphoton entangled state. Nature 2004; 429: 161–164. doi: 10.1038/nature02493
[4] Nagata T, Okamoto R, O'Brien JL, Sasaki K, Takeuchi S. Beating the standard quantum limit with four-entangled photons. Science 2007; 316: 726–729. doi: 10.1126/science.1138007
[5] Higgins BL, Berry DW, Bartlett SD, Wiseman HM, Pryde GJ. Entanglement-free Heisenberg-limited phase estimation. Nature 2007; 450: 393–396. doi: 10.1038/nature06257
[6] Matthews JCF, Politi A, Stefanov A, O'Brien JL. Manipulation of multiphoton entanglement in waveguide quantum circuits. Nat Photonics 2009; 3: 346–350. doi: 10.1038/nphoton.2009.93
[7] Afek I, Ambar O, Silberberg Y. High-NOON states by mixing quantum and classical light. Science 2010; 328: 879–881. doi: 10.1126/science.1188172
[8] Giovannetti V, Lloyd S, Maccone L. Advances in quantum metrology. Nat Photonics 2011; 5: 222–229. doi: 10.1038/nphoton.2011.35
[9] Brun-Picard J, Djordjevic S, Leprat D, Schopfer F, Poirier W. Practical quantum realization of the ampere from the elementary charge. Phys Rev X 2016; 6: 041051.
[10] Migdall AL, Datla RU, Sergienko A, Orszak JS, Shih YH. Absolute detector quantum-efficiency measurements using correlated photons. Metrologia 1995; 32: 479–484. doi: 10.1088/0026-1394/32/6/15
[11] Naganuma K, Mogi K, Yamada H. Group-delay measurement using the Fourier transform of an interferometric cross correlation generated by white light. Opt Lett 1990; 15: 393–395. doi: 10.1364/OL.15.000393
[12] Diddams S, Diels J-C. Dispersion measurements with white-light interferometry. J Opt Soc Am B 1996; 13: 1120–1129. doi: 10.1364/JOSAB.13.001120
[13] Grósz T, Kovács AP, Kiss M, Szipöcs R. Measurement of higher order chromatic dispersion in a photonic bandgap fiber: comparative study of spectral interferometric methods. Appl Opt 2014; 53: 1929–1937. doi: 10.1364/AO.53.001929
[14] Galle MA, Saini SS, Mohammed WS, Qian L. Virtual reference interferometry: theory and experiment. J Opt Soc Am B 2014; 29: 3201–3210. doi: 10.1364/JOSAB.29.003201
[15] Brendel J, Zbinden H, Gisin N. Measurement of chromatic dispersion in optical fibers using pairs of correlated photons. Opt Commun 1998; 151: 35–39. doi: 10.1016/S0030-4018(98)00140-0
[16] Nasr MB, Saleh BEA, Sergienko AV, Teich MC. Dispersion-cancelled and dispersion-sensitive quantum optical coherence tomography. Opt Express 2004; 12: 1353–1362. doi: 10.1364/OPEX.12.001353
[17] Hlubina P, Szpulak M, Ciprian D, Martynkien T, Urbańczyk W. Measurement of the group dispersion of the fundamental mode of holey fiber by white-light spectral interferometry. Opt Express 2007; 15: 11073–11081. doi: 10.1364/OE.15.011073
[18] Labonté L, Roy P, Pagnoux D, Louradour F, Restoin C et al. Experimental and numerical analysis of the chromatic dispersion dependence upon the actual profile of small core microstructured fibres. J Opt A 2006; 8: 933–938. doi: 10.1088/1464-4258/8/11/001
[19] Kardaś TM, Radzewicz C. Broadband near-infrared fibers dispersion measurement using white-light spectral interferometry. Opt Commun 2009; 282: 4361–4365. doi: 10.1016/j.optcom.2009.08.005
[20] Hlubina P, Kadulová M, Mergo P. Chromatic dispersion measurement of holey fibres using a supercontinuum source and a dispersion balanced interferometer. Opt Laser Eng 2013; 51: 421–425. doi: 10.1016/j.optlaseng.2012.11.011
[21] Ye QH, Xu C, Liu X, Knox WH, Yan MF et al. Dispersion measurement of tapered air-silica microstructure fiber by white-light interferometry. Appl Opt 2002; 41: 4467–4470. doi: 10.1364/AO.41.004467
[22] Galle MA, Mohammed WS, Qian L, Smith PWE. Single-arm three-wave interferometer for measuring dispersion of short lengths of fiber. Opt Express 2007; 15: 16896–16908. doi: 10.1364/OE.15.016896
[23] Kovács AP, Osvay K, Bor Z, Szipöcs R. Group-delay measurement on laser mirrors by spectrally resolved white-light interferometry. Opt Lett 1995; 20: 788–790. doi: 10.1364/OL.20.000788
[24] Kaiser F, Issautier A, Ngah LA, Alibart O, Martin A et al. A versatile source of polarization entangled photons for quantum network applications. Laser Phys Lett 2013; 10: 045202. doi: 10.1088/1612-2011/10/4/045202
[25] Alibart O, D'Auria V, De Micheli M, Doutre F, Kaiser F et al. Quantum photonics at telecom wavelengths based on lithium niobate waveguides. J Opt 2016; 18: 104001. doi: 10.1088/2040-8978/18/10/104001
[26] Franson JD. Bell inequality for position and time. Phys Rev Lett 1989; 62: 2205–2208. doi: 10.1103/PhysRevLett.62.2205
[27] Vergyris P, Kaiser F, Gouzien E, Sauder G, Lunghi T et al. Fully guided-wave photon pair source for quantum applications. Quantum Sci Technol 2017; 2: 024007. doi: 10.1088/2058-9565/aa6ed2
[28] Crespi A, Lobino M, Matthews JCF, Politi A, Neal CR et al. Measuring protein concentration with entangled photons. Appl Phys Lett 2012; 100: 233704. doi: 10.1063/1.4724105
[29] Ono T, Okamoto R, Takeuchi S. An entanglement-enhanced microscope. Nat Commun 2013; 4: 2426. doi: 10.1038/ncomms3426
[30] Israel Y, Rosen S, Silberberg Y. Supersensitive polarization microscopy using NOON states of light. Phys Rev Lett 2014; 112: 103604. doi: 10.1103/PhysRevLett.112.103604
[31] Drexler W, Morgner U, Kärtner FX, Pitris C, Boppart SA et al. In vivo ultrahigh-resolution optical coherence tomography. Opt Lett 1999; 24: 1221–1223. doi: 10.1364/OL.24.001221
[32] Frigault MM, Lacoste J, Swift JL, Brown CM. Live-cell microscopy—tips and tools. J Cell Sci 2009; 122: 753–767. doi: 10.1242/jcs.033837
[33] Celebrano M, Kukura P, Renn A, Sandoghdar V. Single-molecule imaging by optical absorption. Nat Photonics 2011; 5: 95–98. doi: 10.1038/nphoton.2010.290
[34] Piliarik M, Sandoghdar V. Direct optical sensing of single unlabelled proteins and super-resolution imaging of their binding sites. Nat Commun 2014; 5: 4495. doi: 10.1038/ncomms5495
[35] Zadeh IE, Los JWN, Gourgues RBn, Steinmetz V, Bulgarini G et al. Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution. APL Photonics 2017; 2: 111301. doi: 10.1063/1.5000001
[36] Mazurek MD, Schreiter KM, Prevedel R, Kaltenbaek R, Resch KJ. Dispersion-cancelled biological imaging with quantum-inspired interferometry. Sci Rep 2013; 3: 1582. doi: 10.1038/srep01582
[37] Manceau M, Khalili F, Chekhova M. Improving the phase super-sensitivity of squeezing-assisted interferometers by squeeze factor unbalancing. N J Phys 2017; 19: 013014. doi: 10.1088/1367-2630/aa53d1