[1] |
Titford, M. The long history of hematoxylin. Biotech. Histochem. 80, 73–78 (2005). doi: 10.1080/10520290500138372 |
[2] |
Alturkistani, H. A., Tashkandi, F. M. & Mohammedsaleh, Z. M. Histological stains: a literature review and case study. Glob. J. Health Sci. 8, 72–79 (2016). doi: 10.5539/gjhs.v8n3p72 |
[3] |
Yamabayashi, S. Periodic acid-Schiff-Alcian Blue: a method for the differential staining of glycoproteins. Histochem. J. 19, 565–571 (1987). doi: 10.1007/BF01687364 |
[4] |
Tao, Y. K. et al. Assessment of breast pathologies using nonlinear microscopy. Proc. Natl Acad. Sci. USA 111, 15304–15309 (2014). doi: 10.1073/pnas.1416955111 |
[5] |
Orringer, D. A. et al. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy. Nat. Biomed. Eng. 1, 0027 (2017). doi: 10.1038/s41551-016-0027 |
[6] |
Tu, H. H. et al. Stain-free histopathology by programmable supercontinuum pulses. Nat. Photonics 10, 534–540 (2016). doi: 10.1038/nphoton.2016.94 |
[7] |
González, S. & Gilaberte‐Calzada, Y. In vivo reflectance-mode confocal microscopy in clinical dermatology and cosmetology. Int. J. Cosmet. Sci. 30, 1–17 (2008). doi: 10.1111/j.1468-2494.2008.00406.x |
[8] |
Mayerich, D. et al. Stain-less staining for computed histopathology. Technology 3, 27–31 (2015). doi: 10.1142/S2339547815200010 |
[9] |
Yoshitake, T. et al. Rapid histopathological imaging of skin and breast cancer surgical specimens using immersion microscopy with ultraviolet surface excitation. Sci. Rep. 8, 4476 (2018). doi: 10.1038/s41598-018-22264-2 |
[10] |
Rivenson, Y. et al. Deep learning enhanced mobile-phone microscopy. ACS Photonics 5, 2354–2364 (2018). doi: 10.1021/acsphotonics.8b00146 |
[11] |
Rivenson, Y. et al. Deep learning microscopy. Optica 4, 1437–1443 (2017). doi: 10.1364/OPTICA.4.001437 |
[12] |
Christiansen, E. M. et al. In silico labeling: predicting fluorescent labels in unlabeled images. Cell 173, 792–803.e19 (2018). doi: 10.1016/j.cell.2018.03.040 |
[13] |
Wu, Y. C. et al. Bright-field holography: cross-modality deep learning enables snapshot 3D imaging with bright-field contrast using a single hologram. Light.: Sci. Appl. 8, 25 (2019). doi: 10.1038/s41377-019-0139-9 |
[14] |
de Haan, K. et al. Deep-learning-based image reconstruction and enhancement in optical microscopy. Proc. IEEE 108, 30–50 (2020). doi: 10.1109/JPROC.2019.2949575 |
[15] |
Rivenson, Y. et al. Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning. Nat. Biomed. Eng. 3, 466–477 (2019). doi: 10.1038/s41551-019-0362-y |
[16] |
Rivenson, Y. et al. PhaseStain: the digital staining of label-free quantitative phase microscopy images using deep learning. Light.: Sci. Appl. 8, 23 (2019). doi: 10.1038/s41377-019-0129-y |
[17] |
Borhani, N. et al. Digital staining through the application of deep neural networks to multi-modal multi-photon microscopy. Biomed. Opt. Express 10, 1339–1350 (2019). doi: 10.1364/BOE.10.001339 |
[18] |
Bulten, W. & Litjens, G. Unsupervised prostate cancer detection on H & E using convolutional adversarial autoencoders. Medical Imaging with Deep Learning (2018). |
[19] |
Bentaieb, A. & Hamarneh, G. Adversarial stain transfer for histopathology image analysis. IEEE Trans. Med. Imaging 37, 792–802 (2018). doi: 10.1109/TMI.2017.2781228 |
[20] |
Zhou, W. et al. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004). doi: 10.1109/TIP.2003.819861 |
[21] |
Fischer, A. H. et al. Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harbor Protocols. https://doi.org/10.1101/pdb.prot4986 (2008). |
[22] |
Herrera, G. A. & Lott, R. L. Silver stains in diagnostic renal pathology. J. Histotechnol. 19, 219–223 (1996). doi: 10.1179/his.1996.19.3.219 |
[23] |
Register Multimodal MRI Images. at https://www.mathworks.com/help/images/registering-multimodal-mri-images.html (MathWorks, 2020). |
[24] |
Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for biomedical image segmentation. Proc. 18th International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, Munich, Germany, 2015). |
[25] |
Wada, K. labelme: Image Polygonal Annotation with Python. https://github.com/wkentaro/labelme (2016). |