[1] Zhu, J. et al. 1700 nm optical coherence microscopy enables minimally invasive, label-free, in vivo optical biopsy deep in the mouse brain. Light. : Sci. Appl. 10, 145 (2021). doi: 10.1038/s41377-021-00586-7
[2] Meyer-Luehmann, M. et al. Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer's disease. Nature 451, 720–724 (2008). doi: 10.1038/nature06616
[3] Srinivasan, V. J. et al. Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast. Opt. Express 20, 2220–2239 (2012). doi: 10.1364/OE.20.002220
[4] Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991). doi: 10.1126/science.1957169
[5] Tomlins, P. H. & Wang, R. K. Theory, developments and applications of optical coherence tomography. J. Phys. D: Appl. Phys. 38, 2519–2535 (2005). doi: 10.1088/0022-3727/38/15/002
[6] Wang, R. K. et al. Three dimensional optical angiography. Opt. Express 15, 4083–4097 (2007). doi: 10.1364/OE.15.004083
[7] Chen, C. L. & Wang, R. K. Optical coherence tomography based angiography [Invited]. Biomed. Opt. Express 8, 1056–1082 (2017). doi: 10.1364/BOE.8.001056
[8] Li, Y. D. et al. Aging-associated changes in cerebral vasculature and blood flow as determined by quantitative optical coherence tomography angiography. Neurobiol. Aging 70, 148–159 (2018). doi: 10.1016/j.neurobiolaging.2018.06.017
[9] Choi, W. J., Li, Y. D. & Wang, R. K. Monitoring acute stroke progression: multi-parametric OCT imaging of cortical perfusion, flow, and tissue scattering in a mouse model of permanent focal ischemia. IEEE Trans. Med. Imaging 38, 1427–1437 (2019). doi: 10.1109/TMI.2019.2895779
[10] Tang, P. J. et al. Imaging and visualization of the polarization state of the probing beam in polarization-sensitive optical coherence tomography. Appl. Phys. Lett. 113, 231101 (2018). doi: 10.1063/1.5050208
[11] Tang, P. J. & Wang, R. K. Polarization state tracing method to map local birefringent properties in samples using polarization sensitive optical coherence tomography. Biomed. Opt. Express 11, 6852–6863 (2020). doi: 10.1364/BOE.408667
[12] Wang, H. et al. Polarization sensitive optical coherence microscopy for brain imaging. Opt. Lett. 41, 2213–2216 (2016). doi: 10.1364/OL.41.002213
[13] Tang, P. J. et al. Measurement and visualization of stimulus-evoked tissue dynamics in mouse barrel cortex using phase-sensitive optical coherence tomography. Biomed. Opt. Express 11, 699–710 (2020). doi: 10.1364/BOE.381332
[14] Marchand, P. J. et al. Statistical parametric mapping of stimuli evoked changes in total blood flow velocity in the mouse cortex obtained with extended-focus optical coherence microscopy. Biomed. Opt. Express 8, 1–15 (2017). doi: 10.1364/BOE.8.000001
[15] Drew, P. J. et al. Chronic optical access through a polished and reinforced thinned skull. Nat. Methods 7, 981–984 (2010). doi: 10.1038/nmeth.1530
[16] Chong, S. P. et al. Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7 μm optical coherence tomography. Opt. Lett. 40, 4911–4914 (2015). doi: 10.1364/OL.40.004911
[17] Park, K. S. et al. Deep brain optical coherence tomography angiography in mice: in vivo, noninvasive imaging of hippocampal formation. Sci. Rep. 8, 11614 (2018). doi: 10.1038/s41598-018-29975-6