[1] NIH. Myeloma - cancer stat facts. (2024). at https://seer.cancer.gov/statfacts/html/mulmy.html URL.
[2] American Cancer Society. Key statistics about multiple myeloma. (2024). at https://www.cancer.net/cancer-types/multiple-myeloma/statistics URL.
[3] MedicineNet. How long a person can live with multiple myeloma? (2024). at https://www.medicinenet.com/how_long_a_person_can_live_with_multiple_myeloma/article.htm URL.
[4] American Cancer Society. Tests for multiple myeloma. (2024). at https://www.cancer.net/cancer-types/multiple-myeloma/diagnosis URL.
[5] Shipp, D. W., Sinjab, F. & Notingher, I. Raman spectroscopy: techniques and applications in the life sciences. Advances in Optics and Photonics 9, 315-428 (2017). doi: 10.1364/AOP.9.000315
[6] Khristoforova, Y. A. et al. Raman spectroscopy in chronic heart failure diagnosis based on human skin analysis. Journal of Biophotonics 16, e202300016 (2023). doi: 10.1002/jbio.202300016
[7] Chisanga, M. et al. Enhancing disease diagnosis: biomedical applications of surface-enhanced Raman scattering. Applied Sciences 9, 1163 (2019). doi: 10.3390/app9061163
[8] Zheng, X. S. et al. Label-free SERS in biological and biomedical applications: recent progress, current challenges and opportunities. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 197, 56-77 (2018). doi: 10.1016/j.saa.2018.01.063
[9] Shin, H. et al. Single test-based diagnosis of multiple cancer types using Exosome-SERS-AI for early stage cancers. Nature Communications 14, 1644 (2023). doi: 10.1038/s41467-023-37403-1
[10] Khristoforova, Y., Bratchenko, L. & Bratchenko, I. Raman-based techniques in medical applications for diagnostic tasks: a review. International Journal of Molecular Sciences 24, 15605 (2023). doi: 10.3390/ijms242115605
[11] Gurian, E. et al. Repeated double cross-validation applied to the PCA-LDA classification of SERS spectra: a case study with serum samples from hepatocellular carcinoma patients. Analytical and Bioanalytical Chemistry 413, 1303-1312 (2021). doi: 10.1007/s00216-020-03093-7
[12] Shi, L. Y. , Li, Y. J. & Li, Z. Early cancer detection by SERS spectroscopy and machine learning. Light: Science & Applications 12, 234 (2023). doi: 10.1038/s41377-023-01271-7
[13] Cennamo, G. et al. Surface-enhanced Raman spectroscopy of tears: toward a diagnostic tool for neurodegenerative disease identification. Journal of Biomedical Optics 25, 087002 (2020). doi: 10.1117/1.JBO.25.8.087002
[14] Devitt, G. et al. Raman spectroscopy: an emerging tool in neurodegenerative disease research and diagnosis. ACS Chemical Neuroscience 9, 404-420 (2018). doi: 10.1021/acschemneuro.7b00413
[15] Badillo-Ramírez, I. et al. SERS-based detection of 5-S-cysteinyl-dopamine as a novel biomarker of Parkinson's disease in artificial biofluids. Analyst 148, 1848-1857 (2023). doi: 10.1039/D3AN00027C
[16] Colniță, A. et al. SERS detection of dopamine in artificial cerebrospinal fluid and in Parkinson’s disease-induced mouse cortex using a hybrid ZnO@Ag nanostructured platform. Microchemical Journal 206, 111589 (2024). doi: 10.1016/j.microc.2024.111589
[17] Choi, Y. et al. Quantitative detection of dopamine in human serum with surface-enhanced Raman scattering (SERS) of constrained vibrational mode. Talanta 260, 124590 (2023). doi: 10.1016/j.talanta.2023.124590
[18] Cao, X. W. et al. LoC-SERS platform integrated with the signal amplification strategy toward Parkinson’s disease diagnosis. ACS Applied Materials & Interfaces 15, 21830-21842 (2023). doi: 10.1021/acsami.3c00103
[19] Lussier, F. et al. Deep learning and artificial intelligence methods for Raman and surface-enhanced Raman scattering. TrAC Trends in Analytical Chemistry 124, 115796 (2020). doi: 10.1016/j.trac.2019.115796
[20] Yang, J. et al. Deep learning for vibrational spectral analysis: Recent progress and a practical guide. Analytica Chimica Acta 1081, 6-17 (2019). doi: 10.1016/j.aca.2019.06.012
[21] Ralbovsky, N. M. & Lednev, I. K. Raman spectroscopy and chemometrics: A potential universal method for diagnosing cancer. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 219, 463-487 (2019). doi: 10.1016/j.saa.2019.04.067
[22] Yang, J. et al. Application of serum SERS technology combined with deep learning algorithm in the rapid diagnosis of immune diseases and chronic kidney disease. Scientific Reports 13, 15719 (2023). doi: 10.1038/s41598-023-42719-5
[23] Gao, N. N. et al. Non-invasive SERS serum detection technology combined with multivariate statistical algorithm for simultaneous screening of cervical cancer and breast cancer. Analytical and Bioanalytical Chemistry 413, 4775-4784 (2021). doi: 10.1007/s00216-021-03431-3
[24] Al-Sammarraie, S. Z. et al. Human blood plasma SERS analysis using silver nanoparticles for cardiovascular diseases detection. Journal of Biomedical Photonics & Engineering 10, 010301 (2024). doi: 10.18287/JBPE24.10.010301
[25] Chen, J. et al. Multiple myeloma detection based on blood plasma surface-enhanced Raman spectroscopy using a portable Raman spectrometer. Laser Physics Letters 13, 105601 (2016). doi: 10.1088/1612-2011/13/10/105601
[26] Chen, X. et al. Non-invasive discrimination of multiple myeloma using label-free serum surface-enhanced Raman scattering spectroscopy in combination with multivariate analysis. Analytica Chimica Acta 1191, 339296 (2022). doi: 10.1016/j.aca.2021.339296
[27] Russo, M. et al. Raman spectroscopic stratification of multiple myeloma patients based on exosome profiling. ACS Omega 5, 30436-30443 (2020). doi: 10.1021/acsomega.0c03813
[28] Liang, H. Y. et al. Raman spectroscopy of dried serum for the detection of rapid noninvasive multiple myeloma. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 328, 125448 (2025). doi: 10.1016/j.saa.2024.125448
[29] Paramelle, D. et al. A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst 139, 4855-4861 (2014). doi: 10.1039/C4AN00978A
[30] Hlaing, M. et al. Absorption and scattering cross-section extinction values of silver nanoparticles. Optical Materials 58, 439-444 (2016). doi: 10.1016/j.optmat.2016.06.013
[31] Sikder, M. et al. A rapid approach for measuring silver nanoparticle concentration and dissolution in seawater by UV–Vis. Science of the Total Environment 618, 597-607 (2018). doi: 10.1016/j.scitotenv.2017.04.055
[32] Al-Sammarraie, S. Z. et al. Silver nanoparticles-based substrate for blood serum analysis under 785 nm laser excitation. Journal of Biomedical Photonics & Engineering 8, 010301 (2022). doi: 10.18287/JBPE22.08.010301
[33] Bonifacio, A. et al. Surface-enhanced Raman spectroscopy of blood plasma and serum using Ag and Au nanoparticles: a systematic study. Analytical and Bioanalytical Chemistry, 406, 2355-2365 (2014). doi: 10.1007/s00216-014-7622-1
[34] Premasiri, W. R., Lee, J. C. & Ziegler, L. D. Surface-enhanced Raman scattering of whole human blood, blood plasma, and red blood cells: cellular processes and bioanalytical sensing. The Journal of Physical Chemistry B 116, 9376-9386 (2012). doi: 10.1021/jp304932g
[35] Kralova, K. et al. Comparative study of Raman spectroscopy techniques in blood plasma-based clinical diagnostics: a demonstration on Alzheimer’s disease. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 304, 123392 (2024). doi: 10.1016/j.saa.2023.123392
[36] Madzharova, F., Heiner, Z. & Kneipp, J. Surface enhanced hyper-Raman scattering of the amino acids tryptophan, histidine, phenylalanine, and tyrosine. The Journal of Physical Chemistry C 121, 1235-1242 (2017). doi: 10.1021/acs.jpcc.6b10905
[37] Podstawka, E., Ozaki, Y. & Proniewicz, L. M. Part I: surface-enhanced Raman spectroscopy investigation of amino acids and their homodipeptides adsorbed on colloidal silver. Appl. Spectrosc. 58, 570-580 (2004). doi: 10.1366/000370204774103408
[38] Hernández, B. et al. Vibrational analysis of amino acids and short peptides in hydrated media. VIII. Amino acids with aromatic side chains: L-phenylalanine, L-tyrosine, and L-tryptophan. The Journal of Physical Chemistry B 114, 15319-15330 (2010). doi: 10.1021/jp106786j
[39] Avci, E. et al. Label-free surface enhanced Raman spectroscopy for cancer detection. Cancers 14, 5021 (2022). doi: 10.3390/cancers14205021
[40] Buhas, B. A. et al. High-accuracy renal cell carcinoma discrimination through label-free SERS of Blood serum and multivariate analysis. Biosensors 13, 813 (2023). doi: 10.3390/bios13080813
[41] Bratchenko, L. A. et al. Analyzing the serum of hemodialysis patients with end-stage chronic kidney disease by means of the combination of SERS and machine learning. Biomedical Optics Express 13, 4926-4938 (2022). doi: 10.1364/BOE.455549
[42] Zong, M. et al. Comparison of surface-enhanced Raman scattering properties of serum and urine for the detection of chronic kidney disease in patients. Applied Spectroscopy 75, 412-421 (2021). doi: 10.1177/0003702820966322
[43] Guo, J. et al. Diagnosis of chronic kidney diseases based on surface-enhanced Raman spectroscopy and multivariate analysis. Laser Physics 28, 075603 (2018). doi: 10.1088/1555-6611/aabec5
[44] American Cancer Society. Can multiple myeloma be found early? at https://www.cancer.org/cancer/types/multiple-myeloma/detection-diagnosis-staging/detection.html URL.
[45] Rajkumar, S. V. et al. International myeloma working group updated criteria for the diagnosis of multiple myeloma. The Lancet Oncology 15, e538-e548 (2014). doi: 10.1016/S1470-2045(14)70442-5
[46] Drayson, M. et al. Laboratory practice is central to earlier myeloma diagnosis: utilizing a primary care diagnostic tool and laboratory guidelines integrated into haematology services. British Journal of Haematology 204, 476-486 (2024). doi: 10.1111/bjh.19224
[47] Bratchenko, L. & Bratchenko, I. Avoiding overestimation and the ‘black box’ problem in biofluids multivariate analysis by Raman spectroscopy: interpretation and transparency with the SP-LIME algorithm. Journal of Raman Spectroscopy (2024). doi: 10.1002/jrs.6764
[48] Li, L. J. et al. SERS monitoring of photoinduced-enhanced oxidative stress amplifier on Au@carbon dots for tumor catalytic therapy. Light: Science & Applications 11, 286 (2022). doi: 10.1038/s41377-022-00968-5
[49] Pham, X. H. et al. Highly sensitive and reliable SERS probes based on nanogap control of a Au–Ag alloy on silica nanoparticles. RSC Advances 7, 7015-7021 (2017). doi: 10.1039/C6RA26213A
[50] Sai, C. D. et al. CuO nanorods decorated gold nanostructures as an ultra-sensitive and recyclable SERS substrate. Materials Chemistry and Physics 293, 126962 (2023). doi: 10.1016/j.matchemphys.2022.126962
[51] Dong, S. L. et al. Early cancer detection by serum biomolecular fingerprinting spectroscopy with machine learning. eLight 3, 17 (2023). doi: 10.1186/s43593-023-00051-5
[52] Becerril‐Castro, I. B. et al. Gold nanostars: synthesis, optical and SERS analytical properties. Analysis & Sensing 2, e202200005 (2022). doi: 10.1002/anse.202200005
[53] Xu, L. G. et al. SERS encoded silver pyramids for attomolar detection of multiplexed disease biomarkers. Advanced Materials 27, 1706-1711 (2015). doi: 10.1002/adma.201402244
[54] Trachta, G. et al. Combination of high-performance liquid chromatography and SERS detection applied to the analysis of drugs in human blood and urine. Journal of Molecular Structure 693, 175-185 (2004). doi: 10.1016/j.molstruc.2004.02.034
[55] Wang, Y. P. et al. Label-free therapeutic drug monitoring in human serum by the 3-step surface enhanced Raman spectroscopy and multivariate analysis. Chemical Engineering Journal 452, 139588 (2023). doi: 10.1016/j.cej.2022.139588
[56] Gerecke, C. et al. The diagnosis and treatment of multiple myeloma. Deutsches Ä rzteblatt International 113, 470-476 (2016). doi: 10.3238/arztebl.2016.0470
[57] Dwivedi, A. et al. SERS-driven ceftriaxone detection in blood plasma: a protein precipitation approach. Chemosensors 12, 213 (2024). doi: 10.3390/chemosensors12100213
[58] Fan, Q. W. et al. Cervical cancer biomarker screening based on Raman spectroscopy and multivariate statistical analysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 317, 124402 (2024). doi: 10.1016/j.saa.2024.124402
[59] Farrés, M. et al. Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation. Journal of Chemometrics 29, 528-536 (2015). doi: 10.1002/cem.2736
[60] Silge, A. et al. The application of UV resonance Raman spectroscopy for the differentiation of clinically relevant Candida species. Analytical and Bioanalytical Chemistry 410, 5839-5847 (2018). doi: 10.1007/s00216-018-1196-2