[1] Wilson WL, Szajowski PF, Brus LE. Quantum confinement in size-selected, surface-oxidized silicon nanocrystals. Science 1993; 262: 1242–1244. doi: 10.1126/science.262.5137.1242
[2] Nozik AJ. Multiple exciton generation in semiconductor quantum dots. Chem Phys Lett 2008; 457: 3–11. doi: 10.1016/j.cplett.2008.03.094
[3] Priolo F, Gregorkiewicz T, Galli M, Krauss TF. Silicon nanostructures for photonics and photovoltaics. Nat Nanotechnol 2014; 9: 19–32. doi: 10.1038/nnano.2013.271
[4] Kovalev D, Heckler H, Polisski G, Koch F. Optical properties of Si nanocrystals. Phys Stat Solid B 1999; 215: 871–932. doi: 10.1002/(SICI)1521-3951(199910)215:2<871::AID-PSSB871>3.0.CO;2-9
[5] Sykora M, Mangolini L, Schaller RD, Kortshagen U, Jurbergs D et al. Size-dependent intrinsic radiative decay rates of silicon nanocrystals at large confinement energies. Phys Rev Lett 2008; 100: 067401. doi: 10.1103/PhysRevLett.100.067401
[6] Minnich AJ, Dresselhaus MS, Ren ZF, Chen G. Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci 2009; 2: 466–479. doi: 10.1039/b822664b
[7] Achermann M, Bartko AP, Hollingsworth JA, Klimov VI. The effect of Auger heating on intraband carrier relaxation in semiconductor quantum rods. Nat Phys 2006; 8: 557–561. doi: 10.1038/nphys363
[8] Timmerman D, Izeddin I, Gregorkiewicz T. Saturation of luminescence from Si nanocrystals embedded in SiO2. Phys Stat Solid A 2010; 207: 183–187. doi: 10.1002/pssa.200925363
[9] Limpens R, Lesage A, Fujii M, Gregorkiewicz T. Size confinement of Si nanocrystals in multinanolayer structures. Sci Rep 2015; 5: 17289. doi: 10.1038/srep17289
[10] Valenta J, Greben M, Gutsch S, Hiller D, Zacharias M. Effects of inter-nanocrystal distance on luminescence quantum yield in ensembles of Si nanocrystals. Appl Phys Lett 2014; 105: 243107. doi: 10.1063/1.4904472
[11] Hartel AM, Hiller D, Gutsch S, Löper P, Estradé S et al. Formation of size-controlled silicon nanocrystals in plasma enhanced chemical vapor deposition grown SiOxNy/SiO2 superlattices. Thin Solid Films 2011; 520: 121–125. doi: 10.1016/j.tsf.2011.06.084
[12] Lax M. Temperature rise induced by a laser beam. J Appl Phys 1977; 48: 3919–3924. doi: 10.1063/1.324265
[13] Delerue C, Lannoo M, Allan G, Martin E, Mihalcescu I et al. Auger and coulomb charging effects in semiconductor nanocrystallites. Phys Rev Lett 1995; 75: 2228–2231. doi: 10.1103/PhysRevLett.75.2228
[14] Timmerman D, Gregorkiewicz T. Power-dependent spectral shift of photoluminescence from ensembles of silicon nanocrystals. Nanoscale Res Lett 2012; 7: 389. doi: 10.1186/1556-276X-7-389
[15] Kovalev D, Diener J, Heckler H, Polisski G, Künzner N et al. Optical absorption cross sections of Si nanocrystals. Phys Rev B 2000; 61: 4485–4487. doi: 10.1103/PhysRevB.61.4485
[16] de Jong EMLD, Mannino G, Alberti A, Ruggeri R, Italia M et al. Strong infrared photoluminescence in highly porous layers of large faceted Si crystalline nanoparticles. Sci Rep 2016; 6: 25664. doi: 10.1038/srep25664
[17] Faraci G, Pennisi AR, Alberti A, Ruggeri R, Mannino G. Giant photoluminescence emission in crystalline faceted Si grains. Sci Rep 2013; 3: 2674. doi: 10.1038/srep02674
[18] Poborchii V, Tada T, Kanayama T. Giant heating of Si nanoparticles by weak laser light: Optical microspectroscopic study and application to particle modification. J Appl Phys 2005; 97: 104323. doi: 10.1063/1.1904157
[19] Han LH, Zeman M, Smets AHM. Raman study of laser-induced heating effects in free-standing silicon nanocrystals. Nanoscale 2015; 7: 8389–8397. doi: 10.1039/C5NR00468C
[20] Koyama H, Fauchet PM. Laser-induced thermal effects on the optical properties of free-standing porous silicon films. J Appl Phys 2000; 87: 1788–1794. doi: 10.1063/1.372093
[21] Koyama H, Fauchet PM. Very large continuous-wave-laser-induced optical absorption in porous silicon films: Evidence for thermal effects. Appl Phys Lett 1998; 73: 3259–3261. doi: 10.1063/1.122737
[22] Konstantinović MJ, Bersier S, Wang X, Hayne M, Lievens P et al. Raman scattering in cluster-deposited nanogranular silicon films. Phys Rev B 2002; 66: 161311. doi: 10.1103/PhysRevB.66.161311
[23] Estreicher SK, Gibbons TM, Kang B, Bebek MB. Phonons and defects in semiconductors and nanostructures: Phonon trapping, phonon scattering, and heat flow at heterojunctions. J Appl Phys 2014; 115: 012012. doi: 10.1063/1.4838059
[24] Davies G. The optical properties of luminescence centres in silicon. Phys Rep 1989; 176: 83–188. doi: 10.1016/0370-1573(89)90064-1
[25] Trupke T, Green MA, Würfel P, Altermatt PP, Wang A et al. Temperature dependence of the radiative recombination coefficient of intrinsic crystalline silicon. J Appl Phys 2003; 94: 4930–4937. doi: 10.1063/1.1610231
[26] Gerlach W, Schlangenotto H, Maeder H. On the radiative recombination rate in silicon. Phys Stat Solid A 1972; 13: 277–283. doi: 10.1002/pssa.2210130129
[27] Yoffe AD. Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Adv Phys 1993; 42: 173–262. doi: 10.1080/00018739300101484
[28] Moskalenko AS, Berakdar J, Prokofiev AA, Yassievich IN. Single-particle states in spherical Si/SiO2 quantum dots. Phys Rev B 2007; 76: 085427. doi: 10.1103/PhysRevB.76.085427
[29] Lienhard IV, JH, Lienhard V, JH. A Heat Transfer Textbook. Cambridge, MA, USA: Phlogiston Press, 2008.
[30] Henager CH, Pawlewicz WT. Thermal conductivities of thin, sputtered optical films. Appl Opt 1993; 32: 91–101. doi: 10.1364/AO.32.000091
[31] Brotzen FR, Loos PJ, Brady DP. Thermal conductivity of thin SiO2 films. Thin Solid Films 1995; 207: 197–201. doi: 10.1016/0040-6090(92)90123-S
[32] Pevere F, Sychugov I, Sangghaleh F, Fucikova A, Linnros J. Biexciton emission as a probe of Auger recombination in individual silicon nanocrystals. J Phys Chem C 2015; 119: 7499–7505. doi: 10.1021/acs.jpcc.5b01114
[33] Mihalcescu I, Vial JC, Bsiesy A, Muller F, Romestain R et al. Saturation and voltage quenching of porous-silicon luminescence and the importance of the Auger effect. Phys Rev B 1995; 51: 17605–17613. doi: 10.1103/PhysRevB.51.17605
[34] Kurova NV, Burdov VA. Resonance structure of the rate of Auger recombination in silicon nanocrystals. Semiconductors 2010; 44: 1414–1417. doi: 10.1134/S1063782610110060
[35] Govoni M, Marri I, Ossicini S. Carrier multiplication between interacting nanocrystals for fostering silicon-based photovoltaics. Nat Photon 2012; 6: 672–679. doi: 10.1038/nphoton.2012.206
[36] Trinh MT, Limpens R, Gregorkiewicz T. Experimental investigations and modeling of Auger recombination in silicon nanocrystals. J Phys Chem C 2013; 117: 5963–5968. doi: 10.1021/jp311124c
[37] Beard MC, Knutsen KP, Yu PR, Luther JM, Song Q et al. Multiple exciton generation in colloidal silicon nanocrystals. Nano Lett 2007; 7: 2506–2512. doi: 10.1021/nl071486l
[38] Trojánek F, Neudert K, Bittner M, Malý P. Picosecond photoluminescence and transient absorption in silicon nanocrystals. Phys Rev B 2005; 72: 075365. doi: 10.1103/PhysRevB.72.075365
[39] Ueda K, Tayagaki T, Fukuda M, Fujii M, Kanemitsu Y. Breakdown of the k-conservation rule in quantized Auger recombination in Si1−xGex nanocrystals. Phys Rev B 2012; 86: 155316. doi: 10.1103/PhysRevB.86.155316
[40] Bergren MR, Palomaki PKB, Neale NR, Furtak TE, Beard MC. Size-dependent exciton formation dynamics in colloidal silicon quantum dots. ACS Nano 2016; 10: 2316–2323. doi: 10.1021/acsnano.5b07073
[41] Klimov VI, Mikhailovsky AA, McBranch DW, Leatherdale CA, Bawendi MG. Quantization of multiparticle Auger rates in semiconductor quantum dots. Science 2000; 287: 1011–1013. doi: 10.1126/science.287.5455.1011