[1] Rivest, R. L., Shamir, A. & Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120-126 (1978). doi: 10.1145/359340.359342
[2] Shor, P. W. Algorithms for quantum computation: discrete logarithms and factoring. Proceedings of the 35th Annual Symposium on Foundations of Computer Science. 124-134 (IEEE, Santa Fe, 1994).
[3] Wyner, A. D. The wire-tap channel. Bell Syst. Tech. J. 54, 1355-1387 (1975). doi: 10.1002/j.1538-7305.1975.tb02040.x
[4] Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145-195 (2002). doi: 10.1103/RevModPhys.74.145
[5] Bennet, C. H., Brassard, G. Quantum cryptography: public key distribution and coin tossing. Proceedings of IEEE International Conference on Computers, Systems and Signal Processing. (IEEE, Bangalore, 1984).
[6] Ekert, A. K. Quantum cryptography based on bell's theorem. Phys. Rev. Lett. 67, 661-663 (1991). doi: 10.1103/PhysRevLett.67.661
[7] Deng, F. G. & Long, G. L. Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70, 012311 (2004). doi: 10.1103/PhysRevA.70.012311
[8] Lucamarini, M. & Mancini, S. Secure deterministic communication without entanglement. Phys. Rev. Lett. 94, 140501 (2005). doi: 10.1103/PhysRevLett.94.140501
[9] Beaudry, N. J., Lucamarini, M., Mancini, S. & Renner, R. Security of two-way quantum key distribution. Phys. Rev. A 88, 062302 (2013). doi: 10.1103/PhysRevA.88.062302
[10] Long, G. L. & Liu, X. S. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002). doi: 10.1103/PhysRevA.65.032302
[11] Deng, F. G., Long, G. L. & Liu, X. S. Two-step quantum direct communication protocol using the einstein-podolsky-rosen pair block. Phys. Rev. A 68, 042317 (2003). doi: 10.1103/PhysRevA.68.042317
[12] Deng, F. G. & Long, G. L. Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004). doi: 10.1103/PhysRevA.69.052319
[13] Eusebi, A. & Mancini, S. Deterministic quantum distribution of a d-ary key. Quantum Inf. Comput. 9, 952-962 (2009).
[14] Pirandola, S., Braunstein, S. L., Lloyd, S. & Mancini, S. Confidential direct communications: a quantum approach using continuous variables. IEEE J. Sel. Top. Quantum Electron 15, 1570-1580 (2009). doi: 10.1109/JSTQE.2009.2021147
[15] Niu, P. H. et al. Measurement-device-independent quantum communication without encryption. Sci. Bull. 63, 1345-1350 (2018). doi: 10.1016/j.scib.2018.09.009
[16] Zhou, Z. R., Sheng, Y. B., Niu, P. H., Yin, L. G., Long, G. L. Measurement-device-independent quantum secure direct communication. arXiv preprint arXiv: 1805.07228, 2018.
[17] Hu, J. Y. et al. Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016). doi: 10.1038/lsa.2016.144
[18] Zhang, W. et al. Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017). doi: 10.1103/PhysRevLett.118.220501
[19] Zhu, F., Zhang, W., Sheng, Y. B. & Huang, Y. D. Experimental long-distance quantum secure direct communication. Sci. Bull. 62, 1519-1524 (2017). doi: 10.1016/j.scib.2017.10.023
[20] Chen, Z., Yin, L. G., Pei, Y. K. & Lu, J. H. CodeHop: physical layer error correction and encryption with LDPC-based code hopping. Sci. China Inf. Sci. 59, 102309 (2016). doi: 10.1007/s11432-015-5452-1
[21] Wang, P., Yin, L. G. & Lu, J. H. Efficient helicopter- satellite communication scheme based on check-hybrid LDPC coding. Tsinghua Sci. Technol. 23, 323-332 (2018). doi: 10.26599/TST.2018.9010038
[22] Holevo, A. S. Bounds for the quantity of information transmitted by a quantum communication channel. Probl. Peredachi Inf. 9, 3-11 (1973).
[23] Gottesman, D., Lo, H. K., Lutkenhaus, N. & Preskill, J. Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4, 325-360 (2004).
[24] Hwang, W. Y. Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003). doi: 10.1103/PhysRevLett.91.057901
[25] Wang, X. B. Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005). doi: 10.1103/PhysRevLett.94.230503
[26] Lo, H. K., Ma, X. & Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005). doi: 10.1103/PhysRevLett.94.230504
[27] MacKay, D. J. Information Theory, Inference, and Learning Algorithms. (Cambridge University Press, Cambridge, 2003).
[28] Brendel, J., Gisin, N., Tittel, W. & Zbinden, H. Pulsed energy-time entangled twin-photon source for quantum communication. Phys. Rev. Lett. 82, 2594-2597 (1999). doi: 10.1103/PhysRevLett.82.2594
[29] Carter, J. L. & Wegman, M. N. Universal classes of hash functions. J. Comput. Syst. Sci. 18, 143-154 (1979). doi: 10.1016/0022-0000(79)90044-8
[30] Tyagi, H. & Vardy, A. Universal hashing for information-theoretic security. Proc. IEEE 103, 1781-1795 (2015). doi: 10.1109/JPROC.2015.2462774
[31] Shannon, C. E. A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 5, 3-55 (2001).
[32] CCSDS. CCSDC 131.1-O-2 Low density parity check codes for use in near-earth and deep space applications. (CCSDS, Washington, DC, USA, 2007).
[33] Hu, X. Y., Eleftheriou, E., Arnold, D. M., Dholakia, A. Efficient implementations of the sum-product algorithm for decoding LDPC codes. Proceedings of IEEE Global Telecommunications Conference. (IEEE, San Antonio, 2001).
[34] Martinelli, M. A universal compensator for polarization changes induced by birefringence on a retracing beam. Opt. Commun. 72, 341-344 (1989). doi: 10.1016/0030-4018(89)90436-7
[35] Muller, A. et al. "Plug and play" systems for quantum cryptography. Appl. Phys. Lett. 70, 793-795 (1997). doi: 10.1063/1.118224
[36] Sun, S. H., Ma, H. Q., Han, J. J., Liang, L. M. & Li, C. Z. Quantum key distribution based on phase encoding in long-distance communication fiber. Opt. Lett. 35, 1203-1205 (2010). doi: 10.1364/OL.35.001203