[1] Tonouchi, M. Cutting-edge terahertz technology. Nature Photonics 1, 97-105 (2007). doi: 10.1038/nphoton.2007.3
[2] Kawase, K. et al. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Optics Express 11, 2549-2554 (2003). doi: 10.1364/OE.11.002549
[3] Mittleman, D. M. et al. Recent advances in terahertz imaging. Applied Physics B 68, 1085-1094 (1999). doi: 10.1007/s003400050750
[4] Mittleman, D. M. Twenty years of terahertz imaging [Invited]. Optics Express 26, 9417-9431 (2018). doi: 10.1364/OE.26.009417
[5] Jansen, C. et al. Terahertz imaging: applications and perspectives. Applied Optics 49, E48-E57 (2010). doi: 10.1364/AO.49.000E48
[6] Beard, M. C., Turner, G. M. & Schmuttenmaer, C. A. Terahertz spectroscopy. J. Phys. Chem. B 106, 7146-7159 (2002). doi: 10.1021/jp020579i
[7] Jepsen, P. U., Cooke, D. G. & Koch, M. Terahertz spectroscopy and imaging–Modern techniques and applications. Laser & Photonics Reviews 5, 124-166 (2011).
[8] Baxter, J. B. & Guglietta, G. W. Terahertz spectroscopy. Analytical Chemistry 83, 4342-4368 (2011). doi: 10.1021/ac200907z
[9] Taday, P. F. Applications of terahertz spectroscopy to pharmaceutical sciences. Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences 362, 351-364 (2004). doi: 10.1098/rsta.2003.1321
[10] Drexler, H. et al. Spectroscopy of quantum levels in charge-tunable InGaAs quantum dots. Physical Review Letters 73, 2252-2255 (1994). doi: 10.1103/PhysRevLett.73.2252
[11] Hameau, S. et al. Strong electron-phonon coupling regime in quantum dots: evidence for everlasting resonant polarons. Physical Review Letters 83, 4152-4155 (1999). doi: 10.1103/PhysRevLett.83.4152
[12] He, X. W. et al. Carbon nanotube terahertz detector. Nano Letters 14, 3953-3958 (2014). doi: 10.1021/nl5012678
[13] Tsurugaya, T. et al. Terahertz spectroscopy of individual carbon nanotube quantum dots. Nano Letters 19, 242-246 (2019). doi: 10.1021/acs.nanolett.8b03801
[14] Joyce, H. J. et al. Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy. Nanotechnology 24, 214006 (2013). doi: 10.1088/0957-4484/24/21/214006
[15] Peng, K. et al. Single nanowire photoconductive terahertz detectors. Nano Letters 15, 206-210 (2015). doi: 10.1021/nl5033843
[16] Han, P. Y. & Zhang, X. C. Free-space coherent broadband terahertz time-domain spectroscopy. Measurement Science and Technology 12, 1747-1756 (2001). doi: 10.1088/0957-0233/12/11/301
[17] Beard, M. C., Turner, G. M. & Schmuttenmaer, C. A. Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy. Physical Review B 62, 15764-15777 (2000). doi: 10.1103/PhysRevB.62.15764
[18] Beard, M. C., Turner, G. M. & Schmuttenmaer, C. A. Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved terahertz spectroscopy. Journal of Applied Physics 90, 5915-5923 (2001). doi: 10.1063/1.1416140
[19] Stringer, M. R. et al. The analysis of human cortical bone by terahertz time-domain spectroscopy. Physics in Medicine & Biology 50, 3211-3219 (2005).
[20] Heiliger, H. M. et al. Low-dispersion thin-film microstrip lines with cyclotene (benzocyclobutene) as dielectric medium. Applied Physics Letters 70, 2233-2235 (1997). doi: 10.1063/1.118849
[21] Wang, K. L. & Mittleman, D. M. Metal wires for terahertz wave guiding. Nature 432, 376-379 (2004). doi: 10.1038/nature03040
[22] Desplanque, L., Lampin, J. F. & Mollot, F. Generation and detection of terahertz pulses using post-process bonding of low-temperature-grown GaAs and AlGaAs. Applied Physics Letters 84, 2049-2051 (2004). doi: 10.1063/1.1688977
[23] Wood, C. et al. On-chip pulsed terahertz systems and their applications. International Journal of Infrared and Millimeter Waves 27, 557-569 (2006).
[24] Cunningham, J. et al. Terahertz evanescent field microscopy of dielectric materials using on-chip waveguides. Applied Physics Letters 92, 032903 (2008). doi: 10.1063/1.2835705
[25] Kasai, S. et al. Micro strip line-based on-chip terahertz integrated devices for high sensitivity biosensors. Applied Physics Express 2, 062401 (2009). doi: 10.1143/APEX.2.062401
[26] George, P. A. et al. Microfluidic devices for terahertz spectroscopy of biomolecules. Optics Express 16, 1577-1582 (2008). doi: 10.1364/OE.16.001577
[27] Tang, Q. et al. Microfluidic devices for terahertz spectroscopy of live cells toward lab-on-a-chip applications. Sensors 16, 476 (2016). doi: 10.3390/s16040476
[28] Ju, X. J. et al. Direct writing of microfluidic three-dimensional photonic crystal structures for terahertz technology applications. ACS Applied Materials & Interfaces 11, 41611-41616 (2019).
[29] Nagel, M. et al. Integrated THz technology for label-free genetic diagnostics. Applied Physics Letters 80, 154-156 (2002). doi: 10.1063/1.1428619
[30] Nagel, M. et al. Integrated planar terahertz resonators for femtomolar sensitivity label-free detection of DNA hybridization. Applied Optics 41, 2074-2078 (2002). doi: 10.1364/AO.41.002074
[31] Serita, K. et al. Invited article: terahertz microfluidic chips sensitivity-enhanced with a few arrays of meta-atoms. APL Photonics 3, 051603 (2018). doi: 10.1063/1.5007681
[32] Hu, X. et al. Metamaterial absorber integrated microfluidic terahertz sensors. Laser & Photonics Reviews 10, 962-969 (2016).
[33] Knoll, B. & Keilmann, F. Near-field probing of vibrational absorption for chemical microscopy. Nature 399, 134-137 (1999). doi: 10.1038/20154
[34] Chen, H. T., Kersting, R. & Cho, G. C. Terahertz imaging with nanometer resolution. Applied Physics Letters 83, 3009-3011 (2003). doi: 10.1063/1.1616668
[35] Wang, K. L. et al. Antenna effects in terahertz apertureless near-field optical microscopy. Applied Physics Letters 85, 2715-2717 (2004). doi: 10.1063/1.1797554
[36] Houel, J. et al. Ultraweak-absorption microscopy of a single semiconductor quantum dot in the midinfrared range. Physical Review Letters 99, 217404 (2007). doi: 10.1103/PhysRevLett.99.217404
[37] Jacob, R. et al. Intersublevel spectroscopy on single inas-quantum dots by terahertz near-field microscopy. Nano Letters 12, 4336-4340 (2012). doi: 10.1021/nl302078w
[38] Maissen, C. et al. Probes for ultrasensitive THz nanoscopy. ACS Photonics 6, 1279-1288 (2019). doi: 10.1021/acsphotonics.9b00324
[39] Wu, S. W. & Ho, W. Two-photon-induced hot-electron transfer to a single molecule in a scanning tunneling microscope. Physical Review B 82, 085444 (2010). doi: 10.1103/PhysRevB.82.085444
[40] Terada, Y. et al. Real-space imaging of transient carrier dynamics by nanoscale pump-probe microscopy. Nature Photonics 4, 869-874 (2010). doi: 10.1038/nphoton.2010.235
[41] Dolocan, A. et al. Two-color ultrafast photoexcited scanning tunneling microscopy. The Journal of Physical Chemistry C 115, 10033-10043 (2011). doi: 10.1021/jp111875f
[42] Yoshida, S. et al. Nanoscale probing of transient carrier dynamics modulated in a GaAs-PIN junction by laser-combined scanning tunneling microscopy. Nanoscale 4, 757-761 (2012). doi: 10.1039/c2nr11551d
[43] Cocker, T. L. et al. An ultrafast terahertz scanning tunnelling microscope. Nature Photonics 7, 620-625 (2013). doi: 10.1038/nphoton.2013.151
[44] Eisele, M. et al. Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution. Nature Photonics 8, 841-845 (2014). doi: 10.1038/nphoton.2014.225
[45] Shigekawa, H., Yoshida, S. & Takeuchi, O. Spectroscopy: nanoscale terahertz spectroscopy. Nature Photonics 8, 815-817 (2014). doi: 10.1038/nphoton.2014.272
[46] Cocker, T. L. et al. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging. Nature 539, 263-267 (2016). doi: 10.1038/nature19816
[47] Yoshioka, K. et al. Real-space coherent manipulation of electrons in a single tunnel junction by single-cycle terahertz electric fields. Nature Photonics 10, 762-765 (2016). doi: 10.1038/nphoton.2016.205
[48] Jelic, V. et al. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface. Nature Physics 13, 591-598 (2017). doi: 10.1038/nphys4047
[49] Zhang, Y. et al. Terahertz intersublevel transitions in single self-assembled InAs quantum dots with variable electron numbers. Nano Letters 15, 1166-1170 (2015). doi: 10.1021/nl5042319
[50] Zhang, Y. et al. Probing many-body quantum states in single InAs quantum dots: terahertz and tunneling spectroscopy. Physical Review B 91, 241301 (2015). doi: 10.1103/PhysRevB.91.241301
[51] Zhang, Y. et al. Gate-controlled terahertz single electron photovoltaic effect in self-assembled InAs quantum dots. Applied Physics Letters 107, 103103 (2015). doi: 10.1063/1.4930023
[52] Zhang, Y. et al. Excited-state charging energies in quantum dots investigated by terahertz photocurrent spectroscopy. Physical Review B 93, 235313 (2016). doi: 10.1103/PhysRevB.93.235313
[53] Du, S. Q. et al. Terahertz dynamics of electron–vibron coupling in single molecules with tunable electrostatic potential. Nature Photonics 12, 608-612 (2018). doi: 10.1038/s41566-018-0241-1
[54] Du, S. Q. et al. Ultrafast rattling motion of a single atom in a fullerene cage sensed by terahertz spectroscopy. Applied Physics Express 13, 105002 (2020). doi: 10.35848/1882-0786/abb68e
[55] Keilmann, F. & Hillenbrand, R. Near-field microscopy by elastic light scattering from a tip. Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences 362, 787-805 (2004). doi: 10.1098/rsta.2003.1347
[56] Cocker, T. L. et al. Nanoscale terahertz scanning probe microscopy. Nature Photonics 15, 558-569 (2021). doi: 10.1038/s41566-021-00835-6
[57] Dolan, G. J. Offset masks for lift‐off photoprocessing. Applied Physics Letters 31, 337-339 (1977). doi: 10.1063/1.89690
[58] Park, H. et al. Fabrication of metallic electrodes with nanometer separation by electromigration. Applied Physics Letters 75, 301-303 (1999). doi: 10.1063/1.124354
[59] Strachan, D. R. et al. Controlled fabrication of nanogaps in ambient environment for molecular electronics. Applied Physics Letters 86, 043109 (2005). doi: 10.1063/1.1857095
[60] Umeno, A. & Hirakawa, K. Nonthermal origin of electromigration at gold nanojunctions in the ballistic regime. Applied Physics Letters 94, 162103 (2009). doi: 10.1063/1.3124654
[61] Shibata, K. et al. Photon-assisted tunneling through self-assembled InAs quantum dots in the terahertz frequency range. Physical Review Letters 109, 077401 (2012). doi: 10.1103/PhysRevLett.109.077401
[62] Yoshida, K., Shibata, K. & Hirakawa, K. Terahertz field enhancement and photon-assisted tunneling in single-molecule transistors. Physical Review Letters 115, 138302 (2015). doi: 10.1103/PhysRevLett.115.138302
[63] Petroff, P., Lorke, A. & Imamoglu, A. Epitaxially self-assembled quantum dots. Physics Today 54, 46-52 (2001).
[64] Andreoni, W. & Curioni, A. Freedom and constraints of a metal atom encapsulated in fullerene cages. Physical Review Letters 77, 834-837 (1996). doi: 10.1103/PhysRevLett.77.834
[65] Andreoni, W. & Curioni, A. Ab initio approach to the structure and dynamics of metallofullerenes. Applied Physics A 66, 299-306 (1998). doi: 10.1007/s003390050670
[66] Park, H. R. et al. Colossal absorption of molecules inside single terahertz nanoantennas. Nano Letters 13, 1782-1786 (2013). doi: 10.1021/nl400374z
[67] Lee, D. K. et al. Highly sensitive and selective sugar detection by terahertz nano-antennas. Scientific Reports 5, 15459 (2015). doi: 10.1038/srep15459
[68] Xie, L. J. et al. Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics. Scientific Reports 5, 8671 (2015). doi: 10.1038/srep08671
[69] Park, S. J. et al. Sensing viruses using terahertz nano-gap metamaterials. Biomedical Optics Express 8, 3551-3558 (2017). doi: 10.1364/BOE.8.003551
[70] Zhao, X. et al. Label-free self-referenced sensing of living cells by terahertz metamaterial-based reflection spectroscopy. Biomedical Optics Express 10, 1196-1206 (2019). doi: 10.1364/BOE.10.001196
[71] Gu, H. Y. et al. Molecular methylation detection based on terahertz metamaterial technology. Analyst 145, 6705-6712 (2020). doi: 10.1039/D0AN01062F
[72] Kanai, Y. et al. Electrically tuned spin–orbit interaction in an InAs self-assembled quantum dot. Nature Nanotechnology 6, 511-516 (2011). doi: 10.1038/nnano.2011.103
[73] Woessner, A. et al. Near-field photocurrent nanoscopy on bare and encapsulated graphene. Nature Communications 7, 10783 (2016). doi: 10.1038/ncomms10783
[74] Mastel, S. et al. Terahertz nanofocusing with cantilevered terahertz-resonant antenna tips. Nano Letters 17, 6526-6533 (2017). doi: 10.1021/acs.nanolett.7b01924
[75] Weng, Q. C. et al. Imaging of nonlocal hot-electron energy dissipation via shot noise. Science 360, 775-778 (2018). doi: 10.1126/science.aam9991
[76] Sherwin, M. S., Imamoglu, A. & Montroy, T. Quantum computation with quantum dots and terahertz cavity quantum electrodynamics. Physical Review A 60, 3508-3514 (1999). doi: 10.1103/PhysRevA.60.3508
[77] Cole, B. E. et al. Coherent manipulation of semiconductor quantum bits with terahertz radiation. Nature 410, 60-63 (2001). doi: 10.1038/35065032
[78] Scalari, G. et al. Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial. Science 335, 1323-1326 (2012). doi: 10.1126/science.1216022
[79] Bayer, A. et al. Terahertz light–matter interaction beyond unity coupling strength. Nano Letters 17, 6340-6344 (2017). doi: 10.1021/acs.nanolett.7b03103
[80] Zhang, Q. et al. Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons. Nature Physics 12, 1005-1011 (2016). doi: 10.1038/nphys3850
[81] Northup, T. E. & Blatt, R. Quantum information transfer using photons. Nature Photonics 8, 356-363 (2014). doi: 10.1038/nphoton.2014.53
[82] Zhang, X. C., Shkurinov, A. & Zhang, Y. Extreme terahertz science. Nature Photonics 11, 16-18 (2017). doi: 10.1038/nphoton.2016.249
[83] Salén, P. et al. Matter manipulation with extreme terahertz light: progress in the enabling THz technology. Physics Reports 836-837, 1-74 (2019). doi: 10.1016/j.physrep.2019.09.002
[84] Qi, T. T. et al. Collective coherent control: synchronization of polarization in ferroelectric PbTiO3 by shaped THz fields. Physical Review Letters 102, 247603 (2009). doi: 10.1103/PhysRevLett.102.247603
[85] Li, X. et al. Terahertz field–induced ferroelectricity in quantum paraelectric SrTiO3. Science 364, 1079-1082 (2019). doi: 10.1126/science.aaw4913
[86] Grishunin, K. et al. Excitation and detection of terahertz coherent spin waves in antiferromagnetic α- Fe2O3. Physical Review B 104, 024419 (2021). doi: 10.1103/PhysRevB.104.024419
[87] Mashkovich, E. A. et al. Terahertz optomagnetism: nonlinear THz excitation of GHz spin waves in antiferromagnetic FeBO3. Physical Review Letters 123, 157202 (2019). doi: 10.1103/PhysRevLett.123.157202
[88] Baierl, S. et al. Terahertz-driven nonlinear spin response of antiferromagnetic nickel oxide. Physical Review Letters 117, 197201 (2016). doi: 10.1103/PhysRevLett.117.197201
[89] Baierl, S. et al. Nonlinear spin control by terahertz-driven anisotropy fields. Nature Photonics 10, 715-718 (2016). doi: 10.1038/nphoton.2016.181
[90] Kampfrath, T., Tanaka, K. & Nelson, K. A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nature Photonics 7, 680-690 (2013). doi: 10.1038/nphoton.2013.184
[91] Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nature Photonics 5, 31-34 (2011). doi: 10.1038/nphoton.2010.259
[92] Clerici, M. et al. Wavelength scaling of terahertz generation by gas ionization. Physical Review Letters 110, 253901 (2013). doi: 10.1103/PhysRevLett.110.253901
[93] Yeh, K. L. et al. Generation of 10 μJ ultrashort terahertz pulses by optical rectification. Applied Physics Letters 90, 171121 (2007). doi: 10.1063/1.2734374