[1] Isberg, J. et al. Single crystal diamond for electronic applications. Diam. Relat. Mater. 13, 320–324 (2004). doi: 10.1016/j.diamond.2003.10.017
[2] Berman, L. E. et al. Diamond crystal X-ray optics for high-power-density synchrotron radiation beams. Nucl. Instrum. Methods Phys. Res. Sect. A 329, 555–563 (1993). doi: 10.1016/0168-9002(93)91291-T
[3] Koizumi, S. et al. Ultraviolet emission from a diamond pn junction. Science 292, 1899–1901 (2001). doi: 10.1126/science.1060258
[4] Akselrod, M. S. & Bruni, F. J. Modern trends in crystal growth and new applications of sapphire. J. Cryst. Growth 360, 134–145 (2012). doi: 10.1016/j.jcrysgro.2011.12.038
[5] Khattak, C. P. et al. World's largest sapphire for many applications. J. Cryst. Growth 452, 44–48 (2016). doi: 10.1016/j.jcrysgro.2015.11.026
[6] Dobrovinskaya, E. R., Lytvynov, L. A. & Pishchik, V. Sapphire: Material, Manufacturing, Applications. (Springer, New York, 2009).
[7] Götze, J. Chemistry textures and physical properties of quartz-geological interpretation and technical application. Mineral. Mag. 73, 645–671 (2009). doi: 10.1180/minmag.2009.073.4.645
[8] Rahim, K. & Mian, A. A review on laser processing in electronic and MEMS packaging. J. Electron. Packag. 139, 030801 (2017). doi: 10.1115/1.4036239
[9] Dubey, A. K. & Yadava, V. Laser beam machining—a review. Int. J. Mach. Tools Manuf. 48, 609–628 (2008). doi: 10.1016/j.ijmachtools.2007.10.017
[10] Cheng, J. et al. A review of ultrafast laser materials micromachining. Opt. Laser Technol. 46, 88–102 (2013). doi: 10.1016/j.optlastec.2012.06.037
[11] Lan, B. et al. Laser precision engineering of glass substrates. Jpn. J. Appl. Phys. 43, 7102 (2004). doi: 10.1143/JJAP.43.7102
[12] Yang, J. et al. Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing. Light 3, e185 (2014). doi: 10.1038/lsa.2014.66
[13] Sugioka, K. & Cheng, Y. Femtosecond laser processing for optofluidic fabrication. Lab a Chip 12, 3576–3589 (2012). doi: 10.1039/c2lc40366h
[14] Kerse, C. et al. Ablation-cooled material removal with ultrafast bursts of pulses. Nature 537, 84–88 (2016). doi: 10.1038/nature18619
[15] Liu, H. G. et al. Self-organized periodic microholes array formation on aluminum surface via femtosecond laser ablation induced incubation effect. Adv. Funct. Mater. 29, 1903576 (2019). doi: 10.1002/adfm.201903576
[16] Chryssolouris, G. Laser Machining: Theory and Practice. (Springer Science & Business Media, 2013).
[17] Faisal, N. et al. Laser micromachining of engineering materials—a review. in Micro and Nano Machining of Engineering Materials (eds Kumar, K., Zindani, D. & Kumari, N. ) Part Ⅲ (Springer, Cham, 2019).
[18] Majumdar, J. D. & Manna, I. Laser material processing. Int. Mater. Rev. 56, 341–388 (2011). doi: 10.1179/1743280411Y.0000000003
[19] Wang, H. et al. On-chip laser processing for the development of multifunctional microfluidic chips. Laser Photonics Rev. 11, 1600116 (2017). doi: 10.1002/lpor.201600116
[20] Samant, A. N. & Dahotre, N. B. Laser machining of structural ceramics—a review. J. Eur. Ceram. Soc. 29, 969–993 (2009). doi: 10.1016/j.jeurceramsoc.2008.11.010
[21] Chong, T. C., Hong, M. H. & Shi, L. P. Laser precision engineering: from microfabrication to nanoprocessing. Laser Photonics Rev. 4, 123–143 (2010). doi: 10.1002/lpor.200810057
[22] Vorobyev, A. Y. & Guo, C. L. Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev. 7, 385–407 (2013). doi: 10.1002/lpor.201200017
[23] Ihlemann, J. et al. Fabrication of submicron gratings in fused silica by F2-laser ablation. Appl. Phys. A 76, 751–753 (2003). doi: 10.1007/s00339-002-1467-8
[24] Gallais, L., Cormont, P. & Rullier, J. L. Investigation of stress induced by CO2 laser processing of fused silica optics for laser damage growth mitigation. Opt. Express 17, 23488–23501 (2009). doi: 10.1364/OE.17.023488
[25] Herman, P. R. et al. Processing applications with the 157-nm fluorine excimer laser. Proc. SPIE 2992, Excimer Lasers, Optics, and Applications. (SPIE, Jose, CA, United States, 1997).
[26] Sugioka, K. et al. Hybrid laser processing for microfabrication of glass. Appl. Phys. A 77, 251–257 (2003). doi: 10.1007/s00339-003-2116-6
[27] Sugioka, K. & Cheng, Y. Ultrafast lasers-reliable tools for advanced materials processing. Light 3, e149 (2014). doi: 10.1038/lsa.2014.30
[28] Gattass, R. R. & Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photonics 2, 219–225 (2008). doi: 10.1038/nphoton.2008.47
[29] Amina et al. Ionization behavior and dynamics of picosecond laser filamentation in sapphire. Optoelectron. Adv. 2, 190003 (2019).
[30] Wlodarczyk, K. L. et al. Rapid laser manufacturing of microfluidic devices from glass substrates. Micromachines 9, 409 (2018). doi: 10.3390/mi9080409
[31] Hwang, D. J. et al. Self-guided glass drilling by femtosecond laser pulses. Appl. Phys. A 94, 555–558 (2009). doi: 10.1007/s00339-008-4973-5
[32] Zhang, J., Sugioka, K. & Midorikawa, K. Laser-induced plasma-assisted ablation of fused quartz using the fourth harmonic of a Nd+: YAG laser. Appl. Phys. A 67, 545–549 (1998). doi: 10.1007/s003390050819
[33] Wang, J., Niino, H. & Yabe, A. One-step microfabrication of fused silica by laser ablation of an organic solution. Appl. Phys. A 68, 111–113 (1999). doi: 10.1007/s003390050863
[34] Ito, Y. et al. High-efficiency and precision cutting of glass by selective laser-assisted milling. Precis. Eng. 47, 498–507 (2017). doi: 10.1016/j.precisioneng.2016.10.005
[35] Liu, X. Q. et al. Dry-etching-assisted femtosecond laser machining. Laser Photonics Rev. 11, 1600115 (2017). doi: 10.1002/lpor.201600115
[36] Juodkazis, S. et al. Control over the crystalline state of sapphire. Adv. Mater. 18, 1361–1364 (2006). doi: 10.1002/adma.200501837
[37] Phillips, K. C. et al. Ultrafast laser processing of materials: a review. Adv. Opt. Photonics 7, 684–712 (2015). doi: 10.1364/AOP.7.000684
[38] Malinauskas, M. et al. Ultrafast laser processing of materials: from science to industry. Light 5, e16133 (2016). doi: 10.1038/lsa.2016.133
[39] Watanabe, W., Li, Y. & Itoh, K. [INVITED] Ultrafast laser micro-processing of transparent material. Opt. Laser Technol. 78, 52–61 (2016). doi: 10.1016/j.optlastec.2015.09.023
[40] Jiang, L. J. et al. Femtosecond laser direct writing in transparent materials based on nonlinear absorption. MRS Bull. 41, 975–983 (2016). doi: 10.1557/mrs.2016.272
[41] Osellame, R. et al. Femtosecond laser microstructuring: an enabling tool for optofluidic lab‐on‐chips. Laser Photonics Rev. 5, 442–463 (2011). doi: 10.1002/lpor.201000031
[42] Nisar, S., Li, L. & Sheikh, M. A. Laser glass cutting techniques—a review. J. Laser Appl. 25, 042010 (2013). doi: 10.2351/1.4807895
[43] Hanada, Y., Sugioka, K. & Midorikawa, K. Laser-induced plasma-assisted ablation (LIPAA): fundamental and industrial applications. in Proc. SPIE 6261, High-Power Laser Ablation VI. (SPIE, Taos NM, US, 2006).
[44] Hong, M. H. et al. Crack-free laser processing of glass substrate and its mechanisms. in Proc. SPIE 4637, Photon Processing in Microelectronics and Photonics. (SPIE, San Jose, California, United States, 2002).
[45] Liu, H. G. et al. High-aspect-ratio crack-free microstructures fabrication on sapphire by femtosecond laser ablation. Opt. Laser Technol. 132, 106472 (2020). doi: 10.1016/j.optlastec.2020.106472
[46] Pan, C. F. et al. Fabrication of micro-texture channel on glass by laser-induced plasma-assisted ablation and chemical corrosion for microfluidic devices. J. Mater. Process. Technol. 240, 314–323 (2017). doi: 10.1016/j.jmatprotec.2016.10.011
[47] Malhotra, R. et al. Laser-induced plasma micro-machining (LIPMM) for enhanced productivity and flexibility in laser-based micro-machining processes. CIRP Ann. 62, 211–214 (2013). doi: 10.1016/j.cirp.2013.03.036
[48] Zhang, J., Sugioka, K. & Midorikawa, K. High-speed machining of glass materials by laser-induced plasma-assisted ablation using a 532-nm laser. Appl. Phys. A 67, 499–501 (1998). doi: 10.1007/s003390050810
[49] Zhang, J., Sugioka, K. & Midorikawa, K. High-quality and high-efficiency machining of glass materials by laser-induced plasma-assisted ablation using conventional nanosecond UV, visible, and infrared lasers. Appl. Phys. A 69, S879–S882 (1999). doi: 10.1007/s003390051551
[50] Hong, M. H. et al. Laser-induced-plasma-assisted ablation for glass microfabrication. in Proc. SPIE 4595, Photonic Systems and Applications. (SPIE, Singapore, Singapore, 2001).
[51] Chao, H. et al. Laser induced backside wet and dry etching of solar glass by short pulse ytterbium fiber laser irradiation. J. Laser Appl. 24, 022005 (2012). doi: 10.2351/1.3701047
[52] Rahman, T. U. et al. Enhancement of pulsed laser-induced silicon plasma-assisted quartz ablation by continuous wave laser irradiation. J. Laser Appl. 32, 022064 (2020). doi: 10.2351/7.0000014
[53] Saxena, I. & Ehmann, K. F. Multimaterial capability of laser induced plasma micromachining. J. Micro Nano-Manuf. 2, 031005 (2014). doi: 10.1115/1.4027811
[54] Li, Y., Liu, H. G. & Hong, M. H. High-quality sapphire microprocessing by dual-beam laser induced plasma assisted ablation. Opt. Express 28, 6242–6250 (2020). doi: 10.1364/OE.381268
[55] Singh, J. P. & Thakur, S. N. Laser-Induced Breakdown Spectroscopy. 2nd edn. (Elsevier, Amsterdam, 2020).
[56] Noack, J. & Vogel, A. Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density. IEEE J. Quantum Electron. 35, 1156–1167 (1999). doi: 10.1109/3.777215
[57] Hanada, Y. et al. Double-pulse irradiation by laser-induced plasma-assisted ablation (LIPAA) and mechanisms study. Appl. Surf. Sci. 248, 276–280 (2005). doi: 10.1016/j.apsusc.2005.03.050
[58] Hanada, Y. et al. Transient electron excitation in laser-induced plasma-assisted ablation of transparent materials. J. Appl. Phys. 99, 043301 (2006). doi: 10.1063/1.2171769
[59] Hong, M. H. et al. Optical diagnostics in laser-induced plasma-assisted ablation of fused quartz. in Proc. SPIE 4088, First International Symposium on Laser Precision Microfabrication. (SPIE, Omiya, Saitama, Japan, 2000).
[60] Hong, M. H. et al. Laser microfabrication of transparent hard materials and signal diagnostics. Appl. Surf. Sci. 186, 556–561 (2002). doi: 10.1016/S0169-4332(01)00638-9
[61] Zhang, J., Sugioka, K. & Midorikawa, K. Direct fabrication of microgratings in fused quartz by laser-induced plasma-assisted ablation with a KrF excimer laser. Opt. Lett. 23, 1486–1488 (1998). doi: 10.1364/OL.23.001486
[62] Jaber, H., Binder, A. & Ashkenasi, D. High-efficiency microstructuring of VUV window materials by laser-induced plasma-assisted ablation (LIPAA) with a KrF excimer laser. in Proc. SPIE 5339, Photon Processing in Microelectronics and Photonics III. (SPIE, San Jose, CA, United States, 2004).
[63] Sugioka, K. et al. Advanced materials processing based on interaction of laser beam and a medium. J. Photochem. Photobiol. A 158, 171–178 (2003). doi: 10.1016/S1010-6030(03)00031-5
[64] Jiang, W. et al. High contrast patterning on glass substrates by 1064 nm pulsed laser irradiation. Optical Mater. Express 7, 1565–1574 (2017). doi: 10.1364/OME.7.001565
[65] Hanada, Y. et al. Colour marking of transparent materials by laser-induced plasma-assisted ablation (LIPAA). J. Phys. 59, 687–690 (2007).
[66] Xu, S. J. et al. Ultrafast fabrication of micro-channels and graphite patterns on glass by nanosecond laser-induced plasma-assisted ablation (LIPAA) for electrofluidic devices. J. Mater. Process. Technol. 247, 204–213 (2017). doi: 10.1016/j.jmatprotec.2017.04.028
[67] Lu, X. Z. et al. Laser-induced-plasma-assisted ablation and metallization on C-plane single crystal sapphire (c-Al2O3). Micromachines 8, 300 (2017). doi: 10.3390/mi8100300
[68] Lee, J. M., Jang, J. H. & Yoo, T. K. Scribing and cutting a blue LED wafer using a Q-switched. Nd: YAG laser. Appl. Phys. A 70, 561–564 (2000).
[69] Verhoff, B., Harilal, S. S. & Hassanein, A. Angular emission of ions and mass deposition from femtosecond and nanosecond laser-produced plasmas. J. Appl. Phys. 111, 123304 (2012). doi: 10.1063/1.4730444
[70] Kopitkovas, G. et al. Fabrication of micro-optical elements in quartz by laser induced backside wet etching. Microelectron. Eng. 67, 438–444 (2003). doi: 10.1016/S0167-9317(03)00099-6
[71] Sun, X. Y. et al. Study on ablation threshold of fused silica by liquid-assisted femtosecond laser processing. Appl. Opt. 58, 9027–9032 (2019). doi: 10.1364/AO.58.009027
[72] Zimmer, K., Braun, A. & Böhme, R. Etching of fused silica and glass with excimer laser at 351 nm. Appl. Surf. Sci. 208-209, 199–204 (2003).
[73] Huang, Z. Q. et al. Laser etching of glass substrates by 1064 nm laser irradiation. Appl. Phys. A 93, 159–163 (2008). doi: 10.1007/s00339-008-4674-0
[74] Xie, X. Z. et al. Cavitation bubble dynamics during laser wet etching of transparent sapphire substrates by 1064 nm laser irradiation. J. Laser Micro/Nanoeng. 8, 259–265 (2013). doi: 10.2961/jlmn.2013.03.0012
[75] Ding, X. M. et al. Laser-induced backside wet etching of sapphire. Jpn. J. Appl. Phys. 42, L176 (2003). doi: 10.1143/JJAP.42.L176
[76] Long, J. Y. et al. Incubation effect during laser-induced backside wet etching of sapphire using high-repetition-rate near-infrared nanosecond lasers. Opt. Laser Technol. 109, 61–70 (2019). doi: 10.1016/j.optlastec.2018.07.066
[77] Böhme, R., Braun, A. & Zimmer, K. Backside etching of UV-transparent materials at the interface to liquids. Appl. Surf. Sci. 186, 276–281 (2002). doi: 10.1016/S0169-4332(01)00630-4
[78] Li, Y. et al. Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses. Opt. Lett. 26, 1912–1914 (2001). doi: 10.1364/OL.26.001912
[79] Hwang, D. J., Choi, T. Y. & Grigoropoulos, C. P. Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass. Appl. Phys. A 79, 605–612 (2004). doi: 10.1007/s00339-004-2547-8
[80] Ehrhardt, M. et al. Microstructuring of fused silica by laser-induced backside wet etching using picosecond laser pulses. Appl. Surf. Sci. 256, 7222–7227 (2010). doi: 10.1016/j.apsusc.2010.05.055
[81] Xu, J. et al. Vertical sidewall electrodes monolithically integrated into 3D glass microfluidic chips using water-assisted femtosecond-laser fabrication for in situ control of electrotaxis. RSC Adv. 5, 24072–24080 (2015). doi: 10.1039/C5RA00256G
[82] Pissadakis, S., Böhme, R. & Zimmer, K. Sub-micron periodic structuring of sapphire by laser induced backside wet etching technique. Opt. Express 15, 1428–1433 (2007). doi: 10.1364/OE.15.001428
[83] Kawaguchi, Y. et al. Etching a micro-trench with a maximum aspect ratio of 60 on silica glass by laser-induced backside wet etching (LIBWE). Jpn. J. Appl. Phys. 44, L176 (2005). doi: 10.1143/JJAP.44.L176
[84] Kopitkovas, G. et al. Laser induced backside wet etching: mechanisms and fabrication of micro-optical elements. J. Phys. 59, 526–532 (2007).
[85] Kawaguchi, Y. et al. Transient pressure induced by laser ablation of toluene, a highly laser-absorbing liquid. Appl. Phys. A 80, 275–281 (2005). doi: 10.1007/s00339-003-2347-6
[86] Böhme, R. & Zimmer, K. The influence of the laser spot size and the pulse number on laser-induced backside wet etching. Appl. Surf. Sci. 247, 256–261 (2005). doi: 10.1016/j.apsusc.2005.01.058
[87] Wang, J., Niino, H. & Yabe, A. Micromachining of transparent materials with super-heated liquid generated by multiphotonic absorption of organic molecule. Appl. Surf. Sci. 154-155, 571–576 (2000).
[88] Vass, C. et al. Experiments and numerical calculations for the interpretation of the backside wet etching of fused silica. Thin Solid Films 453-454, 121–126 (2004).
[89] Xie, X. Z. et al. Laser machining of transparent brittle materials: from machining strategies to applications. Opto-Electron. Adv. 2, 180017 (2019). doi: 10.29026/oea.2019.180017
[90] Niino, H. et al. Surface micro-fabrication of silica glass by excimer laser irradiation of organic solvent. J. Photochem. Photobiol. A 158, 179–182 (2003). doi: 10.1016/S1010-6030(03)00032-7
[91] Zimmer, K., Ehrhardt, M. & Böhme, R. Simulation of laser-induced backside wet etching of fused silica with hydrocarbon liquids. J. Appl. Phys. 107, 034908 (2010). doi: 10.1063/1.3276204
[92] Zimmer, K. et al. Backside etching of fused silica with UV laser pulses using mercury. J. Phys. D 39, 4651–4655 (2006). doi: 10.1088/0022-3727/39/21/022
[93] Böhme, R. & Zimmer, K. Indirect laser etching of fused silica: towards high etching rate processing. Appl. Surf. Sci. 253, 8091–8096 (2007). doi: 10.1016/j.apsusc.2007.02.109
[94] Zimmer, K. & Böhme, R. Laser-induced backside wet etching of transparent materials with organic and metallic absorbers. Laser Chem. 2008, 170632 (2008). doi: 10.1155/2008/170632
[95] Zimmer, K. et al. Excimer laser-induced etching of sub-micron surface relief gratings in fused silica using phase grating projection. Appl. Phys. A 74, 453–456 (2002). doi: 10.1007/s003390101184
[96] Ding, X. et al. Laser-induced high-quality etching of fused silica using a novel aqueous medium. Appl. Phys. A 75, 641–645 (2002). doi: 10.1007/s00339-002-1453-1
[97] Zimmer, K., Böhme, R. & Rauschenbach, B. Laser etching of fused silica using an adsorbed toluene layer. Appl. Phys. A 79, 1883–1885 (2004). doi: 10.1007/s00339-004-2961-y
[98] Li, Y. & Qu, S. L. Water-assisted femtosecond laser ablation for fabricating three-dimensional microfluidic chips. Curr. Appl. Phys. 13, 1292–1295 (2013). doi: 10.1016/j.cap.2013.03.028
[99] Yasui, Y. et al. Microetching of fused silica by laser ablation of organic solution with XeCl excimer laser. Appl. Surf. Sci. 186, 552–555 (2002). doi: 10.1016/S0169-4332(01)00635-3
[100] Tan, Y. X. et al. Water-assisted laser drilling of high-aspect-ratio 3D microchannels in glass with spatiotemporally focused femtosecond laser pulses. Optical Mater. Express 9, 1971–1978 (2019). doi: 10.1364/OME.9.001971
[101] Huang, Z. Q. et al. Quality glass processing by laser induced backside wet etching. J. Laser Micro/Nanoeng. 2, 194–199 (2007). doi: 10.2961/jlmn.2007.03.0006
[102] Kwon, K. K. et al. High aspect ratio channel fabrication with near-infrared laser-induced backside wet etching. J. Mater. Process. Technol. 278, 116505 (2020). doi: 10.1016/j.jmatprotec.2019.116505
[103] Liu, X. Q. et al. Etching-assisted femtosecond laser modification of hard materials. Opto-Electron. Adv. 2, 190021 (2019).
[104] Tan, D. Z. et al. Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications. Prog. Mater. Sci. 76, 154–228 (2016). doi: 10.1016/j.pmatsci.2015.09.002
[105] Krol, D. M. Femtosecond laser modification of glass. J. Non-Crystalline Solids 354, 416–424 (2008). doi: 10.1016/j.jnoncrysol.2007.01.098
[106] Itoh, K. et al. Ultrafast processes for bulk modification of transparent materials. MRS Bull. 31, 620–625 (2006). doi: 10.1557/mrs2006.159
[107] Schaffer, C. B., Brodeur, A. & Mazur, E. Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses. Meas. Sci. Technol. 12, 1784–1794 (2001). doi: 10.1088/0957-0233/12/11/305
[108] Sugioka, K. et al. Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass. Lab a Chip 14, 3447–3458 (2014). doi: 10.1039/C4LC00548A
[109] Stuart, B. C. et al. Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. Phys. Rev. Lett. 74, 2248–2251 (1995). doi: 10.1103/PhysRevLett.74.2248
[110] Stuart, B. C. et al. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B 53, 1749–1761 (1996). doi: 10.1103/PhysRevB.53.1749
[111] Bloembergen, N. A brief history of light breakdown. J. Nonlinear Optical Phys. Mater. 6, 377–385 (1997). doi: 10.1142/S0218863597000289
[112] Beresna, M., Gecevičius, M. & Kazansky, P. G. Ultrafast laser direct writing and nanostructuring in transparent materials. Adv. Opt. Photonics 6, 293–339 (2014). doi: 10.1364/AOP.6.000293
[113] Chan, J. W. et al. Structural changes in fused silica after exposure to focused femtosecond laser pulses. Opt. Lett. 26, 1726–1728 (2001). doi: 10.1364/OL.26.001726
[114] Rodenas, A. & Kar, A. K. High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing. Opt. Express 19, 17820–17833 (2011). doi: 10.1364/OE.19.017820
[115] Liu, J. R. et al. Waveguide shaping and writing in fused silica using a femtosecond laser. IEEE J. Sel. Top. Quantum Electron. 10, 169–173 (2004). doi: 10.1109/JSTQE.2003.822945
[116] Calmano, T. et al. Nd: YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing. Appl. Phys. B 100, 131–135 (2010). doi: 10.1007/s00340-010-3929-6
[117] Li, Q. K. et al. Multilevel phase-type diffractive lens embedded in sapphire. Opt. Lett. 42, 3832–3835 (2017). doi: 10.1364/OL.42.003832
[118] Bhardwaj, V. R. et al. Femtosecond laser-induced refractive index modification in multicomponent glasses. J. Appl. Phys. 97, 083102 (2005). doi: 10.1063/1.1876578
[119] Reupert, A. et al. Angular scattering pattern of femtosecond laser‐induced refractive index modifications in optical fibers. Adv. Optical Mater. 8, 2000633 (2020). doi: 10.1002/adom.202000633
[120] Kanehira, S. et al. Periodic nanovoid structures via femtosecond laser irradiation. Nano Lett. 5, 1591–1595 (2005). doi: 10.1021/nl0510154
[121] Shimotsuma, Y. et al. Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 91, 247405 (2003). doi: 10.1103/PhysRevLett.91.247405
[122] Cheng, Y. et al. Optical gratings embedded in photosensitive glass by photochemical reaction using a femtosecond laser. Opt. Express 11, 1809–1816 (2003). doi: 10.1364/OE.11.001809
[123] Marcinkevičius, A. et al. Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt. Lett. 26, 277–279 (2001). doi: 10.1364/OL.26.000277
[124] Liao, Y. et al. Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration. Lab a Chip 13, 1626–1631 (2013). doi: 10.1039/c3lc41171k
[125] Li, Q. K. et al. Sapphire-based Fresnel zone plate fabricated by femtosecond laser direct writing and wet etching. IEEE Photonics Technol. Lett. 28, 1290–1293 (2016). doi: 10.1109/LPT.2016.2538270
[126] Yang, S. N. et al. Periodic microstructures fabricated by laser interference with subsequent etching. Nanomaterials 10, 1313 (2020). doi: 10.3390/nano10071313
[127] Chen, F. et al. Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method. Opt. Express 18, 20334–20343 (2010). doi: 10.1364/OE.18.020334
[128] Sikorski, Y. et al. Fabrication and characterization of microstructures with optical quality surfaces in fused silica glass using femtosecond laser pulses and chemical etching. Appl. Opt. 45, 7519–7523 (2006). doi: 10.1364/AO.45.007519
[129] Ródenas, A. et al. Three-dimensional femtosecond laser nanolithography of crystals. Nat. Photonics 13, 105–109 (2019). doi: 10.1038/s41566-018-0327-9
[130] Tong, S. Y. et al. Large-scale high quality glass microlens arrays fabricated by laser enhanced wet etching. Opt. Express 22, 29283–29291 (2014). doi: 10.1364/OE.22.029283
[131] Deng, Z. F. et al. Dragonfly-eye-inspired artificial compound eyes with sophisticated imaging. Adv. Funct. Mater. 26, 1995–2001 (2016). doi: 10.1002/adfm.201504941
[132] Chen, F. et al. Rapid fabrication of a large-area close-packed quasi-periodic microlens array on BK7 glass. Opt. Lett. 39, 606–609 (2014). doi: 10.1364/OL.39.000606
[133] Liu, X. Q. et al. Rapid engraving of artificial compound eyes from curved sapphire substrate. Adv. Funct. Mater. 29, 1900037 (2019). doi: 10.1002/adfm.201900037
[134] Masuda, M. et al. 3-D microstructuring inside photosensitive glass by femtosecond laser excitation. Appl. Phys. A 76, 857–860 (2003). doi: 10.1007/s00339-002-1937-z
[135] Li, Q. K. et al. Sapphire-based Dammann gratings for UV beam splitting. IEEE Photonics J. 8, 2500208 (2016).
[136] Lenssen, B. & Bellouard, Y. Optically transparent glass micro-actuator fabricated by femtosecond laser exposure and chemical etching. Appl. Phys. Lett. 101, 103503 (2012). doi: 10.1063/1.4750236
[137] Sun, X. Y. et al. A robust high refractive index sensitivity fiber Mach–Zehnder interferometer fabricated by femtosecond laser machining and chemical etching. Sens. Actuators A 230, 111–116 (2015). doi: 10.1016/j.sna.2015.04.006
[138] Casamenti, E. et al. Optomechanical suspended waveguide for broadband phase modulation with frequency memory effect. Preprint at arXiv https://arxiv.org/abs/1906.02035 (2019).
[139] Hu, Y. L. et al. All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching. Adv. Optical Mater. 6, 1701299 (2018). doi: 10.1002/adom.201701299
[140] Wang, Z. K., Sugioka, K. & Midorikawa, K. Three-dimensional integration of microoptical components buried inside photosensitive glass by femtosecond laser direct writing. Appl. Phys. A 89, 951–955 (2007). doi: 10.1007/s00339-007-4273-5
[141] Haque, M. et al. Chemical-assisted femtosecond laser writing of lab-in-fibers. Lab a Chip 14, 3817–3829 (2014). doi: 10.1039/C4LC00648H
[142] Choudhury, D. et al. Three-dimensional microstructuring of yttrium aluminum garnet crystals for laser active optofluidic applications. Appl. Phys. Lett. 103, 041101 (2013). doi: 10.1063/1.4816338
[143] Kiyama, S. et al. Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates. J. Phys. Chem. C 113, 11560–11566 (2009). doi: 10.1021/jp900915r
[144] Bellouard, Y. et al. Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching. Opt. Express 12, 2120–2129 (2004). doi: 10.1364/OPEX.12.002120
[145] Cheng, Y., Sugioka, K. & Midorikawa, K. Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing. Opt. Lett. 29, 2007–2009 (2004). doi: 10.1364/OL.29.002007
[146] Gottmann, J. et al. Selective laser-induced etching of 3D precision quartz glass components for microfluidic applications—up-scaling of complexity and speed. Micromachines 8, 110 (2017). doi: 10.3390/mi8040110
[147] Bellouard, Y., Said, A. A. & Bado, P. Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica. Opt. Express 13, 6635–6644 (2005). doi: 10.1364/OPEX.13.006635
[148] Tielen, V. & Bellouard, Y. Three-dimensional glass monolithic micro-flexure fabricated by femtosecond laser exposure and chemical etching. Micromachines 5, 697–710 (2014). doi: 10.3390/mi5030697
[149] Cheng, Y. et al. Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser. Opt. Lett. 28, 1144–1146 (2003). doi: 10.1364/OL.28.001144
[150] Malek, C. G. K. Laser processing for bio-microfluidics applications (part I). Anal. Bioanal. Chem. ume 385, 1351–1361 (2006).
[151] Bragheri, F. et al. Optofluidic integrated cell sorter fabricated by femtosecond lasers. Lab a Chip 12, 3779–3784 (2012). doi: 10.1039/c2lc40705a
[152] Hopp, B. et al. Production of submicrometre fused silica gratings using laser-induced backside dry etching technique. J. Phys. D 39, 4843–4847 (2006). doi: 10.1088/0022-3727/39/22/015
[153] Smausz, T. et al. Influence on the laser induced backside dry etching of thickness and material of the absorber, laser spot size and multipulse irradiation. Appl. Surf. Sci. 254, 1091–1095 (2007). doi: 10.1016/j.apsusc.2007.08.068
[154] Böhme, R., Zimmer, K. & Rauschenbach, B. Laser backside etching of fused silica due to carbon layer ablation. Appl. Phys. A 82, 325–328 (2006). doi: 10.1007/s00339-005-3387-x
[155] Hopp, B., Vass, C. & Smausz, T. Laser induced backside dry etching of transparent materials. Appl. Surf. Sci. 253, 7922–7925 (2007). doi: 10.1016/j.apsusc.2007.02.068
[156] Ihlemann, J. Micro patterning of fused silica by laser ablation mediated by solid coating absorption. Appl. Phys. A 93, 65–68 (2008). doi: 10.1007/s00339-008-4663-3
[157] Lorenz, P., Ehrhardt, M. & Zimmer, K. Laser-induced front side etching: an easy and fast method for sub-μm structuring of dielectrics. Phys. Proc. 39, 542–547 (2012). doi: 10.1016/j.phpro.2012.10.071
[158] Wlodarczyk, K. L. et al. Direct CO2 laser-based generation of holographic structures on the surface of glass. Opt. Express 24, 1447–1462 (2016). doi: 10.1364/OE.24.001447
[159] Lorenz, P., Ehrhardt, M. & Zimmer, K. Laser-induced front side etching of fused silica with KrF excimer laser using thin chromium layers. Phys. Status Solidi A 209, 1114–1118 (2012). doi: 10.1002/pssa.201127672
[160] Lorenz, P. et al. Laser-induced front side etching of fused silica with XeF excimer laser using thin metal layers. Appl. Surf. Sci. 258, 9138–9142 (2012). doi: 10.1016/j.apsusc.2011.10.145
[161] Nieto, D. et al. Aluminum thin film enhanced IR nanosecond laser-induced frontside etching of transparent materials. Opt. Lasers Eng. 88, 233–242 (2017). doi: 10.1016/j.optlaseng.2016.08.018
[162] Kondratenko, V. S. et al. Glass cutting technology combining two different lasers. Glass Ceram. 77, 212–214 (2020). doi: 10.1007/s10717-020-00273-w
[163] Pan, Y. X. et al. Millisecond laser machining of transparent materials assisted by a nanosecond laser with different delays. Opt. Lett. 41, 2807–2810 (2016). doi: 10.1364/OL.41.002807
[164] Temple, P. A., Lowdermilk, W. H. & Milam, D. Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm. Appl. Opt. 21, 3249–3255 (1982). doi: 10.1364/AO.21.003249
[165] Zhao, L. et al. Rapid CO2 laser processing technique for fabrication of micro-optics and micro-structures on fused silica materials. Proc. Inst. Mech. Eng. Part B https://doi.org/10.1177/0954405420937534 (2020).
[166] Laguarta, F., Lupon, N. & Armengol, J. Optical glass polishing by controlled laser surface-heat treatment. Appl. Opt. 33, 6508–6513 (1994). doi: 10.1364/AO.33.006508
[167] Nowak, K. M., Baker, H. J. & Hall, D. R. Efficient laser polishing of silica micro-optic components. Appl. Opt. 45, 162–171 (2006). doi: 10.1364/AO.45.000162
[168] Jung, S., Lee, P. A. & Kim, B. H. Surface polishing of quartz-based microfluidic channels using CO2 laser. Microfluid. Nanofluid. 20, 84 (2016). doi: 10.1007/s10404-016-1748-8
[169] Kim, C. et al. Fabrication of a fused silica based mold for the microlenticular lens array using a femtosecond laser and a CO2 laser. Optical Mater. Express 4, 2233–2240 (2014). doi: 10.1364/OME.4.002233
[170] Schwarz, S. et al. Fabrication of a high-quality axicon by femtosecond laser ablation and CO2 laser polishing for quasi-Bessel beam generation. Opt. Express 26, 23287–23294 (2018). doi: 10.1364/OE.26.023287
[171] Serhatlioglu, M. et al. CO2 laser polishing of microfluidic channels fabricated by femtosecond laser assisted carving. J. Micromech. Microeng. 26, 115011 (2016). doi: 10.1088/0960-1317/26/11/115011
[172] Lin, J. T. et al. On-chip three-dimensional high-Q microcavities fabricated by femtosecond laser direct writing. Opt. Express 20, 10212–10217 (2012). doi: 10.1364/OE.20.010212
[173] Richerzhagen, B. et al. Water-jet-guided laser processing. in Proc. SPIE 4830, Third International Symposium on Laser Precision Microfabrication. (SPIE, Osaka, Japan, 2003).
[174] Tabie, V. M. et al. Water-jet guided laser cutting technology-an overview. Lasers Manuf. Mater. Process. 6, 189–203 (2019). doi: 10.1007/s40516-019-00089-9
[175] Porter, J. A. et al. Cutting thin sheet metal with a water jet guided laser using various cutting distances, feed speeds and angles of incidence. Int. J. Adv. Manuf. Technol. 33, 961–967 (2007). doi: 10.1007/s00170-006-0521-7
[176] Richerzhagen, B. Chip singulation process with a water-jet guided laser. Solid State Technol. 44, 25–28 (2001).
[177] Marimuthu, S. et al. Water-jet guided laser drilling of SiC reinforced aluminium metal matrix composites. J. Composite Mater. 53, 3787–3796 (2019). doi: 10.1177/0021998319848062
[178] Green, S., Perrottet, D. & Richerzhagen, B. Damage-free dicing of SiC wafers by water-jet-guided laser. in Proc. CS MANTECH Conference. (Vancouver, British Columbia, Canada, 2006).
[179] Nilsson, T. et al. Scribing of GaN wafer for white LED by water-jet-guided laser. in Proc. SPIE 5366, Light-Emitting Diodes: Research, Manufacturing, and Applications VIII. (SPIE, San Jose, CA, United States, 2004).
[180] Richmann, A. et al. Laser microjet© cutting of up to 3 mm thick sapphire. ICALEO 2014, 1139–1143 (2014).
[181] Li, Y. & Hong, M. J. Parallel laser micro/nano-processing for functional device fabrication. Laser Photonics Rev. 14, 1900062 (2020). doi: 10.1002/lpor.201900062
[182] Tokel, O. et al. In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon. Nat. Photonics 11, 639–645 (2017). doi: 10.1038/s41566-017-0004-4
[183] Xing, Y. Q. et al. Assessment machining of micro-channel textures on PCD by laser-induced plasma and ultra-short pulsed laser ablation. Opt. Laser Technol. 125, 106057 (2020). doi: 10.1016/j.optlastec.2020.106057
[184] Zimmer, K. et al. Backside laser etching of fused silica using liquid gallium. Appl. Phys. A 84, 455–458 (2006). doi: 10.1007/s00339-006-3630-0
[185] Spagnolo, M. et al. Resonant opto-mechanical modulators and switches by femtosecond laser micromachining. Opt. Express 28, 23133–23142 (2020). doi: 10.1364/OE.396513
[186] Liu, X. Q. et al. Wear-resistant blazed gratings fabricated by etching-assisted femtosecond laser lithography. J. Lightw. Technol. https://doi.org/10.1109/JLT.2021.3066976 (2021).
[187] Shan, C. et al. High-level integration of three-dimensional microcoils array in fused silica. Opt. Lett. 40, 4050–4053 (2015). doi: 10.1364/OL.40.004050
[188] He, S. G. et al. Facile fabrication of true three-dimensional microcoils inside fused silica by a femtosecond laser. J. Micromech. Microeng. 22, 105017 (2012). doi: 10.1088/0960-1317/22/10/105017