[1] |
Ferraro, P., Wax, A. & Zalevsky, Z. Coherent Light Microscopy: Imaging and Quantitative Phase Analysis. (Berlin: Springer, 2011). |
[2] |
Schnars, U. & Jueptner, W. Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques. (Berlin: Springer, 2005). |
[3] |
Goodman, J. W. Introduction to Fourier Optics. (New York: McGraw-Hill, 1996). |
[4] |
Cuche, E., Bevilacqua, F. & Depeursinge, C. Digital holography for quantitative phase-contrast imaging. Optics Letters 24, 291-293 (1999). doi: 10.1364/OL.24.000291 |
[5] |
Marquet, P. et al. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Optics Letters 30, 468-470 (2005). doi: 10.1364/OL.30.000468 |
[6] |
Charrière, F. et al. Cell refractive index tomography by digital holographic microscopy. Optics Letters 31, 178-180 (2006). doi: 10.1364/OL.31.000178 |
[7] |
Dubois, F. et al. Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration. Journal of Biomedical Optics 11, 054032 (2006). doi: 10.1117/1.2357174 |
[8] |
Kemper, B. & Von Bally, G. Digital holographic microscopy for live cell applications and technical inspection. Applied Optics 47, A52-A61 (2008). doi: 10.1364/AO.47.000A52 |
[9] |
Rappaz, B. et al. Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer. Cytometry Part A 73A, 895-903 (2008). doi: 10.1002/cyto.a.20605 |
[10] |
Faridian, A. et al. Nanoscale imaging using deep ultraviolet digital holographic microscopy. Optics Express 18, 14159-14164 (2010). doi: 10.1364/OE.18.014159 |
[11] |
Anand, A., Chhaniwal, V. K. & Javidi, B. Real-time digital holographic microscopy for phase contrast 3D imaging of dynamic phenomena. Journal of Display Technology 6, 500-505 (2010). doi: 10.1109/JDT.2010.2052020 |
[12] |
Kemper, B. et al. Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy. Journal of Biomedical Optics 15, 036009 (2010). doi: 10.1117/1.3431712 |
[13] |
Shaked, N. T. et al. Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy. Biomedical Optics Express 1, 706-719 (2010). doi: 10.1364/BOE.1.000706 |
[14] |
Anand, A., Chhaniwal, V. K. & Javidi, B. Imaging embryonic stem cell dynamics using quantitative 3-D digital holographic microscopy. IEEE Photonics Journal 3, 546-554 (2011). doi: 10.1109/JPHOT.2011.2158637 |
[15] |
Shin, D. et al. Optofluidic system for three-dimensional sensing and identification of micro-organisms with digital holographic microscopy. Optics Letters 35, 4066-4068 (2010). doi: 10.1364/OL.35.004066 |
[16] |
Anand, A. et al. Automatic identification of malaria-infected RBC with digital holographic microscopy using correlation algorithms. IEEE Photonics Journal 4, 1456-1464 (2012). doi: 10.1109/JPHOT.2012.2210199 |
[17] |
Yi, F. L., Moon, I. & Javidi, B. Cell morphology-based classification of red blood cells using holographic imaging informatics. Biomedical Optics Express 7, 2385-2399 (2016). doi: 10.1364/BOE.7.002385 |
[18] |
Kemper, B. et al. Simplified approach for quantitative digital holographic phase contrast imaging of living cells. Journal of Biomedical Optics 16, 026014 (2011). doi: 10.1117/1.3540674 |
[19] |
Singh, A. S. G. et al. Lateral shearing digital holographic imaging of small biological specimens. Optics Express 20, 23617-23622 (2012). doi: 10.1364/OE.20.023617 |
[20] |
Chhaniwal, V. et al. Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’ s mirror. Optics Letters 37, 5127-5129 (2012). doi: 10.1364/OL.37.005127 |
[21] |
Anand, A., Moon, I. & Javidi, B. Automated disease identification with 3-D optical imaging: a medical diagnostic tool. Proceedings of the IEEE 105, 924-946 (2017). doi: 10.1109/JPROC.2016.2636238 |
[22] |
Javidi, B. et al. Sickle cell disease diagnosis based on spatio-temporal cell dynamics analysis using 3D printed shearing digital holographic microscopy. Optics Express 26, 13614-13627 (2018). doi: 10.1364/OE.26.013614 |
[23] |
Anand, A., Chhaniwal, V. & Javidi, B. Tutorial: common path self-referencing digital holographic microscopy. APL Photonics 3, 071101 (2018). doi: 10.1063/1.5027081 |
[24] |
O’Connor, T. et al. Deep learning-based cell identification and disease diagnosis using spatio-temporal cellular dynamics in compact digital holographic microscopy. Biomedical Optics Express 11, 4491-4508 (2020). doi: 10.1364/BOE.399020 |
[25] |
Ebrahimi, S. et al. Digital holographic microscopy with coupled optical fiber trap for cell measurement and manipulation. Optics Letters 39, 2916-2919 (2014). doi: 10.1364/OL.39.002916 |
[26] |
Ashkin, A. Acceleration and trapping of particles by radiation pressure. Physical Review Letters 24, 156-159 (1970). doi: 10.1103/PhysRevLett.24.156 |
[27] |
Ashkin, A. et al. Observation of a single-beam gradient force optical trap for dielectric particles. Optics Letters 11, 288-290 (1986). doi: 10.1364/OL.11.000288 |
[28] |
Uchida, N. et al. Direct isolation of human central nervous system stem cells. Proceedings of the National Academy of Sciences of the United States of America 97, 14720-14725 (2000). doi: 10.1073/pnas.97.26.14720 |
[29] |
Kekarainen, T. et al. Optimization of immunomagnetic separation for cord blood-derived hematopoietic stem cells. BMC Cell Biology 7, 30 (2006). doi: 10.1186/1471-2121-7-30 |
[30] |
Ashkin, A. & Dziedzic, J. M. Optical trapping and manipulation of viruses and bacteria. Science 235, 1517-1520 (1987). doi: 10.1126/science.3547653 |
[31] |
Bustamante, C., Bryant, Z. & Smith, S. B. Ten years of tension: single-molecule DNA mechanics. Nature 421, 423-427 (2003). doi: 10.1038/nature01405 |
[32] |
Clement-Sengewald, A. et al. Fertilization of bovine oocytes induced solely with combined laser microbeam and optical tweezers. Journal of Assisted Reproduction and Genetics 13, 259-265 (1996). doi: 10.1007/BF02065947 |
[33] |
Applegate, R. W. Jr. et al. Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping. Lab on a Chip 6, 422-426 (2006). doi: 10.1039/b512576f |
[34] |
Cho, S. H. et al. Human mammalian cell sorting using a highly integrated micro-fabricated fluorescence-activated cell sorter (μFACS). Lab on a Chip 10, 1567-1573 (2010). doi: 10.1039/c000136h |
[35] |
Kasukurti, A. et al. Single-cell isolation using a DVD optical pickup. Optics Express 19, 10377-10386 (2011). doi: 10.1364/OE.19.010377 |
[36] |
Pellizzaro, A. et al. Direct laser trapping for measuring the behavior of transfused erythrocytes in a sickle cell anemia patient. Biomedical Optics Express 3, 2190-2199 (2012). doi: 10.1364/BOE.3.002190 |
[37] |
Paul, A., Padmapriya, P. & Natarajan, V. Diagnosis of malarial infection using change in properties of optically trapped red blood cells. Biomedical Journal 40, 101-105 (2017). doi: 10.1016/j.bj.2016.10.001 |
[38] |
Roy, B. et al. Using Brownian motion to measure shape asymmetry in mesoscopic matter using optical tweezers. Soft Matter 12, 5077-5080 (2016). doi: 10.1039/C6SM00264A |
[39] |
Gautam, R. et al. Optical force-induced nonlinearity and self-guiding of light in human red blood cell suspensions. Light:Science & Applications 8, 31 (2019). |
[40] |
Liang, Y. et al. Manipulation and assessment of human red blood cells with tunable “Tug-of-War” optical tweezers. Physical Review Applied 12, 064060 (2019). doi: 10.1103/PhysRevApplied.12.064060 |
[41] |
Avsievich, T. et al. The advancement of blood cell research by optical tweezers. Reviews in Physics 5, 100043 (2020). doi: 10.1016/j.revip.2020.100043 |
[42] |
Zhu, R. X. et al. Optical tweezers in studies of red blood cells. Cells 9, 545 (2020). doi: 10.3390/cells9030545 |
[43] |
Memmolo, P. et al. 3D morphometry of red blood cells by digital holography. Cytometry Part A 85, 1030-1036 (2014). doi: 10.1002/cyto.a.22570 |
[44] |
Cardenas, N. & Mohanty, S. K. Optical tweezers assisted quantitative phase imaging led to thickness mapping of red blood cells. Applied Physics Letters 103, 013703 (2013). doi: 10.1063/1.4812985 |
[45] |
Bernecker, C. et al. Biomechanics of Ex vivo-generated red blood cells investigated by optical tweezers and digital holographic microscopy. Cells 10, 552 (2021). doi: 10.3390/cells10030552 |
[46] |
Kwon, H. et al. Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nature Photonics 14, 109-114 (2020). doi: 10.1038/s41566-019-0536-x |
[47] |
Engay, E. et al. Polarization-dependent all-dielectric metasurface for single-shot quantitative phase imaging. Nano Letters 21, 3820-3826 (2021). doi: 10.1021/acs.nanolett.1c00190 |
[48] |
Patel, N. et al. Compact and low-cost instrument for digital holographic microscopy of immobilized micro-particles. Optics and Lasers in Engineering 137, 106397 (2021). doi: 10.1016/j.optlaseng.2020.106397 |
[49] |
Abe, S. Support Vector Machines for Pattern Classification. (London: Springer, 2010). |
[50] |
Berg-Sørensen, K. & Flyvbjerg, H. Power spectrum analysis for optical tweezers. Review of Scientific Instruments 75, 594-612 (2004). doi: 10.1063/1.1645654 |
[51] |
Fischer, M. et al. Active-passive calibration of optical tweezers in viscoelastic media. Review of Scientific Instruments 81, 015103 (2010). doi: 10.1063/1.3280222 |
[52] |
Dulbecco, R. & Vogt, M. Plaque formation and isolation of pure lines with poliomyelitis viruses. Journal of Experimental Medicine 99, 167-182 (1954). doi: 10.1084/jem.99.2.167 |
[53] |
Dasgupta, R. et al. Optical orientation and rotation of trapped red blood cells with Laguerre-Gaussian mode. Optics Express 19, 7680-7688 (2011). doi: 10.1364/OE.19.007680 |