[1] Heilmeier, G. H., Zanoni, L. A. & Barton, L. A. Dynamic scattering: a new electrooptic effect in certain classes of nematic liquid crystals. Proc. IEEE 56, 1162–1171 (1968). doi: 10.1109/PROC.1968.6513
[2] Schadt, M. & Helfrich, W. Voltage-dependent optical activity of a twisted nematic liquid crystal. Appl. Phys. Lett. 18, 127–128 (1971). doi: 10.1063/1.1653593
[3] Schiekel, M. F. & Fahrenschon, K. Deformation of nematic liquid crystals with vertical orientation in electrical fields. Appl. Phys. Lett. 19, 391–393 (1971). doi: 10.1063/1.1653743
[4] Soref, R. A. Transverse field effects in nematic liquid crystals. Appl. Phys. Lett. 22, 165–166 (1973). doi: 10.1063/1.1654597
[5] Schadt, M. Milestone in the history of field-effect liquid crystal displays and materials. Jpn. J. Appl. Phys. 48, 03B001 (2009). doi: 10.1143/JJAP.48.03B001
[6] Yang, D. K. & Wu, S. T. Fundamentals of Liquid Crystal Devices. 2nd edn. (John Wiley & Sons, Chichester, 2015).
[7] Tang, C. W. & VanSlyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913–915 (1987). doi: 10.1063/1.98799
[8] Baldo, M. A. et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151–154 (1998). doi: 10.1038/25954
[9] Adachi, C. et al. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. J. Appl. Phys. 90, 5048–5051 (2001). doi: 10.1063/1.1409582
[10] Uoyama, H. et al. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012). doi: 10.1038/nature11687
[11] Sasabe, H. et al. Extremely low operating voltage green phosphorescent organic light-emitting devices. Adv. Funct. Mater. 23, 5550–5555 (2013). doi: 10.1002/adfm.201301069
[12] Kim, K. H. et al. Phosphorescent dye-based supramolecules for high-efficiency organic light-emitting diodes. Nat. Commun. 5, 4769 (2014). doi: 10.1038/ncomms5769
[13] Kim, K. H. & Kim, J. J. Origin and control of orientation of phosphorescent and TADF dyes for high-efficiency OLEDs. Adv. Mater. 30, 1705600 (2018). doi: 10.1002/adma.201705600
[14] Lee, J. H. et al. Blue organic light-emitting diodes: current status, challenges, and future outlook. J. Mater. Chem. C 7, 5874–5888 (2019). doi: 10.1039/C9TC00204A
[15] Buckley, A. Organic Light-Emitting Diodes (OLEDs): Materials, Devices and Applications. (Woodhead Publishing Limited, Philadelphia, PA, 2013).
[16] Gaspar, D. J. & Polikarpov, E. OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes. (Taylor & Francis Group, Boca Raton, FL, 2015).
[17] Tsujimura, T. OLED Display Fundamentals and Applications. 4th edn. (John Wiley & Sons, Hoboken, NJ, 2017).
[18] Jiang, H. X. et al. III-nitride blue microdisplays. Appl. Phys. Lett. 78, 1303–1305 (2001). doi: 10.1063/1.1351521
[19] Park, S. I. et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 325, 977–981 (2009). doi: 10.1126/science.1175690
[20] Jiang, H. X. & Lin, J. Y. Nitride micro-LEDs and beyond - a decade progress review. Opt. Express 21, A475–A484 (2013). doi: 10.1364/OE.21.00A475
[21] Tull, B. R. et al. High brightness, emissive microdisplay by integration of III-V LEDs with thin film silicon transistors. SID Symp. Digest Tech. Papers 46, 375–377 (2015). doi: 10.1002/sdtp.10256
[22] Lee, V. W., Twu, N. & Kymissis, I. Micro-LED technologies and applications. Inf. Disp. 32, 16–23 (2016).
[23] Templier, F. GaN-based emissive microdisplays: a very promising technology for compact, ultra-high brightness display systems. J. Soc. Inf. Disp. 24, 669–675 (2016). doi: 10.1002/jsid.516
[24] Huang, Y. G. et al. Prospects and challenges of mini-LED and micro-LED displays. J. Soc. Inf. Disp. 27, 387–401 (2019). doi: 10.1002/jsid.760
[25] Wu, T. Z. et al. Mini-LED and micro-LED: promising candidates for the next generation display technology. Appl. Sci. 8, 1557 (2018). doi: 10.3390/app8091557
[26] Biwa, G. et al. Technologies for the Crystal LED display system. SID Symp. Digest Tech. Paper 50, 121–124 (2019). doi: 10.1002/sdtp.12870
[27] Wong, M. S., Nakamura, S. & DenBaars, S. P. Review—progress in high performance III-nitride micro-light-emitting diodes. ECS J. Solid State Sci. Technol. 9, 015012 (2020). doi: 10.1149/2.0302001JSS
[28] Tan, G. J. et al. High dynamic range liquid crystal displays with a mini-LED backlight. Opt. Express 26, 16572–16584 (2018). doi: 10.1364/OE.26.016572
[29] Cok, R. S. et al. Inorganic light-emitting diode displays using micro-transfer printing. J. Soc. Inf. Disp. 25, 589–609 (2017). doi: 10.1002/jsid.610
[30] Chen, K. T. et al. Highly transparent AMOLED display with interactive system. SID Symp. Digest Tech. Papers 50, 842–845 (2019). doi: 10.1002/sdtp.13053
[31] Liu, Y. T. et al. PixeLED display for transparent applications. SID Symp. Digest Tech. Papers 49, 874–875 (2018). doi: 10.1002/sdtp.12235
[32] Chen, H. W., Tan, G. J. & Wu, S. T. Ambient contrast ratio of LCDs and OLED displays. Opt. Express 25, 33643–33656 (2017). doi: 10.1364/OE.25.033643
[33] Masaoka, K., Nishida, Y. & Sugawara, M. Designing display primaries with currently available light sources for UHDTV wide-gamut system colorimetry. Opt. Express 22, 19069–19077 (2014). doi: 10.1364/OE.22.019069
[34] Masaoka, K. & Nishida, Y. Metric of color-space coverage for wide-gamut displays. Opt. Express 23, 7802–7808 (2015). doi: 10.1364/OE.23.007802
[35] Zhu, R. D. et al. Realizing Rec. 2020 color gamut with quantum dot displays. Opt. Express 23, 23680–23693 (2015). doi: 10.1364/OE.23.023680
[36] Takeda, A. et al. A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology. SID Symp. Digest Tech. Papers 29, 1077–1080 (1998). doi: 10.1889/1.1833672
[37] Lee, S. H., Lee, S. L. & Kim, H. Y. Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching. Appl. Phys. Lett. 73, 2881–2883 (1998). doi: 10.1063/1.122617
[38] Kim, S. S. et al. New technologies for advanced LCD-TV performance. J. Soc. Inf. Disp. 12, 353–359 (2004). doi: 10.1889/1.1847732
[39] Lu, R. B. et al. Color shift reduction of a multi-domain IPS-LCD using RGB-LED backlight. Opt. Express 14, 6243–6252 (2006). doi: 10.1364/OE.14.006243
[40] Lu, R. B., Nie, X. Y. & Wu, S. T. Color performance of an MVA-LCD using an LED backlight. J. Soc. Inf. Disp. 16, 1139–1145 (2008). doi: 10.1889/JSID16.11.1139
[41] Kurita, T. Moving picture quality improvement for hold-type AM-LCDs. SID Symp. Digest Tech. Papers 32, 986–989 (2001). doi: 10.1889/1.1832037
[42] Peng, F. L. et al. Analytical equation for the motion picture response time of display devices. J. Appl. Phys. 121, 023108 (2017). doi: 10.1063/1.4974006
[43] Féry, C. et al. Physical mechanism responsible for the stretched exponential decay behavior of aging organic light-emitting diodes. Appl. Phys. Lett. 87, 213502 (2005). doi: 10.1063/1.2133922
[44] Lee, E. et al. Quantum dot conversion layers through inkjet printing. SID Symp. Digest Tech.Papers 49, 525–527 (2018). doi: 10.1002/sdtp.12452
[45] Gou, F. W. et al. Tripling the optical efficiency of color-converted micro-LED displays with funnel-tube array. Crystals 9, 39 (2019). doi: 10.3390/cryst9010039
[46] Chen, G. S. et al. Monolithic red/green/blue micro-LEDs with HBR and DBR structures. IEEE Photonics Technol. Lett. 30, 262–265 (2018). doi: 10.1109/LPT.2017.2786737
[47] Kim, H. J. et al. Optical efficiency enhancement in wide color gamut LCD by a patterned quantum dot film and short pass reflector. SID Symp. Digest Tech. Papers 47, 827–829 (2016). doi: 10.1002/sdtp.10801
[48] Sadasivan, S. et al. Performance benchmarking of wide color gamut televisions and monitors. SID Symp. Digest Tech. Papers 47, 333–335 (2016). doi: 10.1002/sdtp.10672
[49] 3M Optical Systems. VikuitiTM dual brightness enhancement film (DBEF) http://www.opticalfilters.co.uk/includes/downloads/3m/DBEF_E_DS_7516882.pdf. (2008).
[50] Armitage, D., Underwood, I. & Wu, S. T. Introduction to Microdisplays. (John Wiley & Sons, Chichester, UK, 2006).
[51] Lu, M. H. M. et al. Power consumption and temperature increase in large area active-matrix OLED displays. J. Disp. Technol. 4, 47–53 (2008). doi: 10.1109/JDT.2007.900924
[52] Zhou, L. et al. Power consumption model for AMOLED display panel based on 2T-1C pixel circuit. J. Display Technol. 12, 1064–1069 (2016). doi: 10.1109/JDT.2016.2583665
[53] Soh, M. Y. et al. Design and characterization of micro-LED matrix display with heterogeneous integration of GaN and BCD technologies. IEEE Trans. Electron Devices 66, 4221–4227 (2019). doi: 10.1109/TED.2019.2933552
[54] Shockley, W. The theory of p-n junctions in semiconductors and p-n junction transistors. Bell Syst. Tech. J. 28, 435–489 (1949). doi: 10.1002/j.1538-7305.1949.tb03645.x
[55] Sedra, A. S. & Smith, K. C. Microelectronic Circuits. 7th edn. (Oxford University Press, New York, 2015).
[56] Mark, P. & Helfrich, W. Space-charge-limited currents in organic crystals. J. Appl. Phys. 33, 205–215 (1962). doi: 10.1063/1.1728487
[57] Mott, N. F. & Gurney, R. W. Electronic Processes in Ionic Crystals. (Clarendon Press, Oxford, 1940).
[58] Murgatroyd, P. N. Theory of space-charge-limited current enhanced by Frenkel effect. J. Phys. D: Appl. Phys. 3, 151–156 (1970). doi: 10.1088/0022-3727/3/2/308
[59] Wu, Y. E. et al. Active matrix mini-LED backlights for 1000PPI VR LCD. SID Symp. Digest Tech. Papers 50, 562–565 (2019). doi: 10.1002/sdtp.12982
[60] Narukawa, Y. et al. White light emitting diodes with super-high luminous efficacy. J. Phys. D: Appl. Phys. 43, 354002 (2010). doi: 10.1088/0022-3727/43/35/354002
[61] Ahn, H. A., Hong, S. K. & Kwon, O. K. An active matrix micro-pixelated LED display driver for high luminance uniformity using resistance mismatch compensation method. IEEE Trans. Circuits Syst. II: Express Briefs 65, 724–728 (2018). doi: 10.1109/TCSII.2018.2790412
[62] Chaji, G. R. & Nathan, A. Parallel addressing scheme for voltage-programmed active-matrix OLED displays. IEEE Trans. Electron Devices 54, 1095–1100 (2007). doi: 10.1109/TED.2007.894608
[63] Templier, F. et al. A novel process for fabricating high-resolution and very small pixel-pitch GaN LED microdisplays. SID Symp. Digest Tech. Papers 48, 268–271 (2017). doi: 10.1002/sdtp.11684
[64] Templier, F. et al. Advanced solutions for high-performance GaN MicroLED displays. Proceedings of SPIE 10918, Gallium Nitride Materials and Devices XIV. (SPIE, San Francisco, 2019).
[65] Chu, C. H., Wu, F. & Sun, S. High PPI micro-LED display based on PWM technology. SID Symp. Digest Tech. Papers 49, 337–338 (2018). doi: 10.1002/sdtp.12719
[66] Takita, Y. et al. Highly efficient deep-blue fluorescent dopant for achieving low-power OLED display satisfying BT.2020 chromaticity. J. Soc. Inf. Disp. 26, 55–63 (2018).
[67] Kuritzky, L. Y., Weisbuch, C. & Speck, J. S. Prospects for 100% wall-plug efficient III-nitride LEDs. Opt. Express 26, 16600–16608 (2018). doi: 10.1364/OE.26.016600
[68] Olivier, F. et al. Shockley-Read-Hall and Auger non-radiative recombination in GaN based LEDs: a size effect study. Appl. Phys. Lett. 111, 022104 (2017). doi: 10.1063/1.4993741
[69] Daami, A. et al. Electro-optical size-dependence investigation in GaN micro-LED devices. SID Symp. Digest Tech. Papers 49, 790–793 (2018). doi: 10.1002/sdtp.12325
[70] Gou, F. W. et al. Angular color shift of micro-LED displays. Opt. Express 27, A746–A757 (2019). doi: 10.1364/OE.27.00A746
[71] Chen, S. M., Sun, X. W. & Kwok, H. S. Hybrid analog-digital driving method for high definition AMOLED. SID Symp. Digest Tech. Papers 45, 1514–1517 (2014). doi: 10.1002/j.2168-0159.2014.tb00402.x
[72] Hosoumi, S. et al. Ultra-wide color gamut OLED display using a deep-red phosphorescent device with high efficiency, long life, thermal stability, and absolute BT.2020 red chromaticity. SID Symp. Digest Tech. Papers 48, 13–16 (2017). doi: 10.1002/sdtp.11562
[73] Salehi, A. et al. Recent advances in OLED optical design. Adv. Funct. Mater. 29, 1808803 (2019). doi: 10.1002/adfm.201808803
[74] Utsumi, Y. et al. Improved contrast ratio in IPS-Pro LCD TV by using quantitative analysis of depolarized light leakage from component materials. SID Symp. Digest Tech. Papers 39, 129–132 (2008). doi: 10.1889/1.3069379
[75] Chen, H. W. et al. Depolarization effect in liquid crystal displays. Opt. Express 25, 11315–11328 (2017). doi: 10.1364/OE.25.011315
[76] Seetzen, H. et al. High dynamic range display systems. ACM SIGGRAPH 2004 Papers. (ACM, New York, 2004).
[77] Kim, S. E. et al. How to reduce light leakage and clipping in local-dimming liquid-crystal displays. J. Soc. Inf. Disp. 17, 1051–1057 (2009). doi: 10.1889/JSID17.12.1051
[78] Chen, H. F. et al. Evaluation of LCD local-dimming-backlight system. J. Soc. Inf. Disp. 18, 57–65 (2010). doi: 10.1889/JSID18.1.57
[79] Hoffman, D. M., Stepien, N. N. & Xiong, W. The importance of native panel contrast and local dimming density on perceived image quality of high dynamic range displays. J. Soc. Inf. Disp. 24, 216–228 (2016). doi: 10.1002/jsid.416
[80] Guarnieri, G., Albani, L. & Ramponi, G. Minimum-error splitting algorithm for a dual layer LCD display—part I: background and theory. J. Display Technol. 4, 383–390 (2008). doi: 10.1109/JDT.2008.2001159
[81] Guarnieri, G., Albani, L. & Ramponi, G. Minimum-error splitting algorithm for a dual layer LCD display—part II: implementation and results. J. Display Technol. 4, 391–397 (2008). doi: 10.1109/JDT.2008.2001748
[82] Chen, H. W. et al. Pixel-by-pixel local dimming for high-dynamic-range liquid crystal displays. Opt. Express 25, 1973–1984 (2017). doi: 10.1364/OE.25.001973
[83] Peng, F. L. et al. High performance liquid crystals for vehicle displays. Opt. Mater. Express 6, 717–726 (2016). doi: 10.1364/OME.6.000717
[84] Huang, Y. G., He, Z. Q. & Wu, S. T. Fast-response liquid crystal phase modulators for augmented reality displays. Opt. Express 25, 32757–32766 (2017). doi: 10.1364/OE.25.032757
[85] Huang, Y. G. et al. Optimized blue-phase liquid crystal for field-sequential-color displays. Opt. Mater. Express 7, 641–650 (2017). doi: 10.1364/OME.7.000641
[86] Choi, T. H. et al. Effect of two-dimensional confinement on switching of vertically aligned liquid crystals by an in-plane electric field. Opt. Express 24, 20993–21000 (2016). doi: 10.1364/OE.24.020993
[87] Morrison, G. Dolby Vision, HDR10, Technicolor and HLG: hDR formats explained. https://www.cnet.com/news/dolby-vision-hdr10-advanced-hdr-and-hlg-hdr-formats-explained (2019).
[88] Chinnock, C. Dolby Vision and HDR10. https://www.insightmedia.info/comparing-dolby-vision-and-hdr10 (2016).
[89] VESA. High-Performance Monitor and Display Compliance Test Specification (DisplayHDR CTS). https://displayhdr.org/performance-criteria (2019).
[90] Helman, J. L. Delivering high dynamic range video to consumer devices. SID Symposium Digest of Technical Papers 46, 292–295 (2015). doi: 10.1002/sdtp.10469
[91] Daly, S. et al. Viewer preferences for shadow, diffuse, specular, and emissive luminance limits of high dynamic range displays. SID Symp. Digest Tech. Papers 44, 563–566 (2013). doi: 10.1002/j.2168-0159.2013.tb06271.x
[92] Nishimura, J. et al. Super bright 8K LCD with 10, 000 nit realized by excellent light-resistance characteristics of IGZO TFT backplane. SID Symp. Digest Tech. Papers 51, paper 3.1 (2020). doi: 10.1002/sdtp.13744
[93] Murawski, C., Leo, K. & Gather, M. C. Efficiency roll-off in organic light-emitting diodes. Adv. Mater. 25, 6801–6827 (2013). doi: 10.1002/adma.201301603
[94] ST 2084: 2014 High dynamic range electro-optical transfer function of mastering reference displays. (SMPTE, 2014).
[95] Daly, S. & Feng, X. F. Bit-depth extension: overcoming LCD-driver limitations by using models of the equivalent input noise of the visual system. J. Soc. Inf. Display 13, 51–66 (2005). doi: 10.1889/1.1867100
[96] Zhu, R. D., Chen, H. W. & Wu, S. T. Achieving 12-bit perceptual quantizer curve with liquid crystal display. Opt. Express 25, 10939–10946 (2017). doi: 10.1364/OE.25.010939
[97] Tan, G. J. et al. Analysis and optimization on the angular color shift of RGB OLED displays. Opt. Express 25, 33629–33642 (2017). doi: 10.1364/OE.25.033629
[98] Dong, C. et al. Eliminate angular color shift in top-emitting OLEDs through cavity design. J. Soc. Inf. Disp. 27, 469–479 (2019).
[99] Yang, S. M. et al. Angular color variation in micron-scale light-emitting diode arrays. Opt. Express 27, A1308–A1323 (2019). doi: 10.1364/OE.27.0A1308
[100] Guo, W. J. et al. The impact of luminous properties of red, green, and blue mini-LEDs on the color gamut. IEEE Trans. Electron Devices 66, 2263–2268 (2019). doi: 10.1109/TED.2019.2906321
[101] Chen, H. W., He, J. & Wu, S. T. Recent advances on quantum-dot-enhanced liquid-crystal displays. IEEE J. Selected Topics Quantum Electron. 23, 1900611 (2017).
[102] Kim, H. M. et al. Ten micrometer pixel, quantum dots color conversion layer for high resolution and full color active matrix micro-LED display. J. Soc. Inf. Disp. 27, 347–353 (2019). doi: 10.1002/jsid.782
[103] Chen, H. W. et al. Liquid crystal display and organic light-emitting diode display: present status and future perspectives. Light: Sci. Appl. 7, 17168 (2018). doi: 10.1038/lsa.2017.168
[104] Chen, H. W. et al. Going beyond the limit of an LCD's color gamut. Light: Sci. Appl. 6, e17043 (2017). doi: 10.1038/lsa.2017.43
[105] Tan, G. J. et al. Foveated imaging for near-eye displays. Opt. Express 26, 25076–25085 (2018). doi: 10.1364/OE.26.025076
[106] AU Optronics Corp. AUO Showcases Mini LED Backlit LCDs Across Diverse Verticals to Seize Smart Living Market Opportunities. https://www.auo.com/en-global/New_Archive/detail/News_Archive_Technology_190513 (2019).
[107] Handschy, M. A., McNeil, J. R. & Weissman, P. E. Ultrabright head-mounted displays using LED-illuminated LCOS. Proceedings of SPIE 6224, Helmet- and Head-Mounted Displays XI: Technologies and Applications. (SPIE, Florida, 2006).
[108] Chen, H. M. P. et al. Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices. Appl. Sci. 8, 2323 (2018). doi: 10.3390/app8112323
[109] Lu, P. C. et al. Highest PPI micro-OLED display sustain for near-eye application. SID Symp. Digest Tech. Papers 50, 725–726 (2019). doi: 10.1002/sdtp.13022
[110] Zhang, L. et al. Monochromatic active matrix micro-LED micro-displays with > 5, 000 dpi pixel density fabricated using monolithic hybrid integration process. SID Symp. Digest Tech. Papers 49, 333–336 (2018). doi: 10.1002/sdtp.12718
[111] Bibl, A. et al. Method of fabricating a micro device transfer head. US patent 9, 620, 478 B2 (April 11, 2017).
[112] Bai, X. et al. Flexible quantum dot color converter film for micro‐LED applications. SID Symp. Digest Tech. Papers 50, 30–33 (2019). doi: 10.1002/sdtp.12848
[113] Harding, J. OLCD: delivering an exciting future for flexible displays. Inf. Disp. 35, 9–13 (2019).
[114] Pang, H. Q. et al. Thermal behavior and indirect life test of large-area OLED lighting panels. J. Solid State Lighting 1, 7 (2014). doi: 10.1186/2196-1107-1-7
[115] Fan, R., Zhang, X. N. & Tu, Z. T. Influence of ambient temperature on OLED lifetime and uniformity based on modified equivalent lifetime detection. J. Soc. Inf. Disp. 27, 597–607 (2019). doi: 10.1002/jsid.788
[116] Huang, Y. G. et al. Liquid-crystal-on-silicon for augmented reality displays. Appl. Sci. 8, 2366 (2018). doi: 10.3390/app8122366
[117] Lee, Y. H., Zhan, T. & Wu, S. T. Prospects and challenges in augmented reality displays. Virtual Reality Intelligent Hardware 1, 10–20 (2019). doi: 10.3724/SP.J.2096-5796.2018.0009