[1] Shin, D. et al. Scalable variable-index elasto-optic metamaterials for macroscopic optical components and devices. Nature Communications 8, 16090 (2017). doi: 10.1038/ncomms16090
[2] Ohmori, H. et al. Ultraprecision micro-grinding of germanium immersion grating element for mid-infrared super dispersion spectrograph. CIRP Annals 50, 221-224 (2001). doi: 10.1016/S0007-8506(07)62109-X
[3] Yang, L. J. & Xing, T. W. Selection of the compensation quantity to the lens deformation caused by gravity. Proceedings of SPIE 9281, 7th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies. Harbin, China: SPIE, 2014.
[4] Yin, S. H. et al. Review of small aspheric glass lens molding technologies. Frontiers of Mechanical Engineering 12, 66-76 (2017). doi: 10.1007/s11465-017-0417-2
[5] Chen, F. J. et al. Form error compensation in single-point inclined axis nanogrinding for small aspheric insert. The International Journal of Advanced Manufacturing Technology 65, 433-441 (2013). doi: 10.1007/s00170-012-4182-4
[6] Chen, F. J. et al. Fabrication of small aspheric moulds using single point inclined axis grinding. Precision Engineering 39, 107-115 (2015). doi: 10.1016/j.precisioneng.2014.06.009
[7] Jing, X. et al. Transverse additive manufacturing and optical evaluation of miniature thin lenses in ultracompact micro multi-spherical compound eye. Optics and Lasers in Engineering 151, 106913 (2022). doi: 10.1016/j.optlaseng.2021.106913
[8] Szkudlarek, K. et al. Terahertz 3D printed diffractive lens matrices for field-effect transistor detector focal plane arrays. Optics Express 24, 20119-20131 (2016). doi: 10.1364/OE.24.020119
[9] Zhang, H. et al. Rapid trapping and tagging of microparticles in controlled flow by in situ digital projection lithography. Lab on a Chip 22, 1951-1961 (2022). doi: 10.1039/D2LC00186A
[10] Behroodi, E., Latifi, H. & Najafi, F. A compact LED-based projection microstereolithography for producing 3D microstructures. Scientific Reports 9, 19692 (2019). doi: 10.1038/s41598-019-56044-3
[11] Wang, Z. et al. Digital micro-mirror device -based light curing technology and its biological applications. Optics & Laser Technology 143, 107344 (2021).
[12] Jiang, M. L. et al. 3D high precision laser printing of a flat nanofocalizer for subwavelength light spot array. Optics Letters 46, 356-359 (2021).
[13] Malinauskas, M. et al. 3D microoptical elements formed in a photostructurable germanium silicate by direct laser writing. Optics and Lasers in Engineering 50, 1785-1788 (2012).
[14] Zhuang, H. Q. et al. Assessment of spinal tumor treatment using implanted 3D-printed vertebral bodies with robotic stereotactic radiotherapy. The Innovation 1, 100040 (2020).
[15] Furlan, W. D. et al. 3D printed diffractive terahertz lenses. Optics Letters 41, 1748-1751 (2016).
[16] Cai, S. X. et al. Microlenses arrays: fabrication, materials, and applications. Microscopy Research and Technique 84, 2784-2806 (2021). doi: 10.1002/jemt.23818
[17] Hu, Z. Y. et al. Miniature optoelectronic compound eye camera. Nature Communications 13, 5634 (2022). doi: 10.1038/s41467-022-33072-8
[18] Camposeo, A. et al. Additive manufacturing: applications and directions in photonics and optoelectronics. Advanced Optical Materials 7, 1800419 (2019). doi: 10.1002/adom.201800419
[19] Chaudhary, R. P. et al. Additive manufacturing of polymer-derived ceramics: materials, technologies, properties and potential applications. Progress in Materials Science 128, 100969 (2022). doi: 10.1016/j.pmatsci.2022.100969
[20] Salter, P. S. & Booth, M. J. Adaptive optics in laser processing. Light:Science & Applications 8, 110 (2019).
[21] Liu, Y. Q. et al. Breakthroughs in projection-enabled additive manufacturing: From novel strategies to cutting-edge applications. The Innovation 4, 100395 (2023).
[22] Xue, D., Wang, Y. C. & Mei, D. Q. Multi-step exposure method for improving structure flatness in digital light processing-based printing. Journal of Manufacturing Processes 39, 106-113 (2019).
[23] Kang, M. S., Jin, H. & Jeon, H. Photonic crystal L3 cavity laser fabricated using maskless digital photolithography. Nanophotonics 11, 2283-2291 (2022). doi: 10.1515/nanoph-2022-0021
[24] Yang, D. F. et al. Structural optimization and performance testing of gold microarray electrode fabricated by DMD lithography and electrodeposition. Chinese Optics 15, 592-607 (2022). doi: 10.37188/CO.2021-0109
[25] Zhang, H. et al. Transparent and robust superhydrophobic structure on silica glass processed with microstereolithography printing. ACS Applied Materials & Interfaces 15, 38132-38142 (2023).
[26] Hou, Z. Z. et al. Direct ink writing of materials for electronics-related applications: a mini review. Frontiers in Materials 8, 647229 (2021). doi: 10.3389/fmats.2021.647229
[27] Ge, Q. et al. Projection micro stereolithography based 3D printing and its applications. International Journal of Extreme Manufacturing 2, 022004 (2020). doi: 10.1088/2631-7990/ab8d9a
[28] Lichade, K. M., Joyee, E. B. & Pan, Y. Y. Gradient light video projection-based stereolithography for continuous production of solid objects. Journal of Manufacturing Processes 65, 20-29 (2021). doi: 10.1016/j.jmapro.2021.02.048
[29] Heinrich, A. et al. Additive manufacturing of optical components. Advanced Optical Technologies 5, 293-301 (2016). doi: 10.1515/aot-2016-0021
[30] Zhang, Z. M., Meng, Q. W. & Luo, N. N. A DMD based UV lithography method with improved dynamical modulation range for the fabrication of curved microstructures. AIP Advances 11, 045008 (2021). doi: 10.1063/5.0045641
[31] Alam, F. et al. Prospects for additive manufacturing in contact lens devices. Advanced Engineering Materials 23, 2000941 (2021). doi: 10.1002/adem.202000941
[32] Vaidya, N. & Solgaard, O. 3D printed optics with nanometer scale surface roughness. Microsystems & Nanoengineering 4, 18 (2018).
[33] Zolfaghari, A., Chen, T. T. & Yi, A. Y. Additive manufacturing of precision optics at micro and nanoscale. International Journal of Extreme Manufacturing 1, 012005 (2019). doi: 10.1088/2631-7990/ab0fa5
[34] Chen, X. F. et al. High-speed 3D printing of millimeter-size customized aspheric imaging lenses with Sub 7 nm surface roughness. Advanced Materials 30, 1705683 (2018). doi: 10.1002/adma.201705683
[35] Kuo, H. F. & Huang, Y. J. Resolution enhancement using pulse width modulation in digital micromirror device-based point-array scanning pattern exposure. Optics and Lasers in Engineering 79, 55-60 (2016).
[36] Chaudhary, R. et al. Additive manufacturing by digital light processing: a review. Progress in Additive Manufacturing 8, 331-351 (2023). doi: 10.1007/s40964-022-00336-0
[37] Liu, C. et al. Correction of a digital micromirror device lithography system for fabrication of a pixelated liquid crystal micropolarizer array. Optics Express 30, 12014-12025 (2022). doi: 10.1364/OE.453800
[38] Yuan, C. et al. Ultrafast three-dimensional printing of optically smooth microlens arrays by oscillation-assisted digital light processing. ACS Applied Materials & Interfaces 11, 40662-40668 (2019).
[39] Kafle, A. et al. 3D/4D printing of polymers: fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA). Polymers 13, 3101 (2021).
[40] Manapat, J. Z. et al. 3D printing of polymer nanocomposites via stereolithography. Macromolecular Materials and Engineering 302, 1600553 (2017).
[41] Sun, C. et al. Projection micro-stereolithography using digital micro-mirror dynamic mask. Sensors and Actuators A:Physical 121, 113-120 (2005). doi: 10.1016/j.sna.2004.12.011
[42] Shao, G. B. , Hai, R. H. & Sun, C. 3D printing customized optical lens in minutes. Advanced Optical Materials 8, 1901646 (2020).
[43] He, Z. Q. et al. Adaptive liquid crystal microlens array enabled by two-photon polymerization. Optics Express 26, 21184-21193 (2018). doi: 10.1364/OE.26.021184
[44] Sugioka, K. & Cheng, Y. Ultrafast lasers—reliable tools for advanced materials processing. Light:Science & Applications 3, e149 (2014).
[45] Sygletou, M. et al. Advanced photonic processes for photovoltaic and energy storage systems. Advanced Materials 29, 1700335 (2017). doi: 10.1002/adma.201700335
[46] Pingali, R. & Saha, S. K. Reaction-diffusion modeling of photopolymerization during femtosecond projection two-photon lithography. Journal of Manufacturing Science and Engineering 144, 021011 (2022). doi: 10.1115/1.4051830
[47] Toulouse, A. et al. High resolution femtosecond direct laser writing with wrapped lens. Optical Materials Express 12, 3801-3809 (2022). doi: 10.1364/OME.468534
[48] Eschenbaum, C. et al. Hybrid lithography: combining UV-exposure and two photon direct laser writing. Optics Express 21, 29921-29926 (2013). doi: 10.1364/OE.21.029921
[49] Saha, S. K. et al. Scalable submicrometer additive manufacturing. Science 366, 105-109 (2019). doi: 10.1126/science.aax8760
[50] Zhang, Y. L. et al. Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today 5, 435-448 (2010). doi: 10.1016/j.nantod.2010.08.007
[51] Weber, K. et al. Distortion-free multi-element Hypergon wide-angle micro-objective obtained by femtosecond 3D printing. Optics Letters 45, 2784-2787 (2020). doi: 10.1364/OL.392253
[52] Cardenas-Benitez, B. et al. Pyrolysis-induced shrinking of three-dimensional structures fabricated by two-photon polymerization: experiment and theoretical model. Microsystems & Nanoengineering 5, 38 (2019).
[53] Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190-1194 (2016). doi: 10.1126/science.aaf6644
[54] Somers, P. et al. Rapid, continuous projection multi-photon 3D printing enabled by spatiotemporal focusing of femtosecond pulses. Light:Science & Applications 10, 199 (2021).
[55] Malinauskas, M. et al. Ultrafast laser nanostructuring of photopolymers: a decade of advances. Physics Reports 533, 1-31 (2013). doi: 10.1016/j.physrep.2013.07.005
[56] Zhu, Y. Z. et al. Recent advancements and applications in 3D printing of functional optics. Additive Manufacturing 52, 102682 (2022). doi: 10.1016/j.addma.2022.102682
[57] Gonzalez‐Hernandez, D. et al. Micro‐optics 3D printed via multi‐photon laser lithography. Advanced Optical Materials 11, 2370001 (2023). doi: 10.1002/adom.202370001
[58] Maruo, S., Nakamura, O. & Kawata, S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Optics Letters 22, 132-134 (1997). doi: 10.1364/OL.22.000132
[59] Chung, T. T. et al. Design and two-photon polymerization of complex functional micro-objects for Lab-on-a-Chip: rotating micro-valves. Journal of Neuroscience and Neuroengineering 2, 48-52 (2013). doi: 10.1166/jnsne.2013.1038
[60] Glezer, E. N. & Mazur, E. Ultrafast-laser driven micro-explosions in transparent materials. Applied Physics Letters 71, 882-884 (1997). doi: 10.1063/1.119677
[61] Mochizuki, H. et al. Density characterization of femtosecond laser modification in polymers. Applied Physics Letters 92, 091120 (2008). doi: 10.1063/1.2884684
[62] Hildebrand, G. et al. Process development for additive manufacturing of alumina toughened zirconia for 3D structures by means of two-photon absorption technique. Ceramics 4, 224-239 (2021). doi: 10.3390/ceramics4020017
[63] Harinarayana, V. & Shin, Y. C. Two-photon lithography for three-dimensional fabrication in micro/nanoscale regime: a comprehensive review. Optics & Laser Technology 142, 107180 (2021).
[64] Fritzler, K. B. & Prinz, V. Y. 3D printing methods for micro- and nanostructures. Physics-Uspekhi 62, 54-69 (2019).
[65] Nocentini, S. et al. 3D printed photoresponsive materials for photonics. Advanced Optical Materials 7, 1900156 (2019).
[66] LaFratta, C. N. & Baldacchini, T. Two-photon polymerization metrology: characterization methods of mechanisms and microstructures. Micromachines 8, 101 (2017). doi: 10.3390/mi8040101
[67] Xing, J. F., Zheng, M. L. & Duan, X. M. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. Chemical Society Reviews 44, 5031-5039 (2015). doi: 10.1039/C5CS00278H
[68] Heidrich, S. et al. Optics manufacturing by laser radiation. Optics and Lasers in Engineering 59, 34-40 (2014). doi: 10.1016/j.optlaseng.2014.03.001
[69] Liu, X. Q. et al. Rapid engraving of artificial compound eyes from curved sapphire substrate. Advanced Functional Materials 29, 1900037 (2019). doi: 10.1002/adfm.201900037
[70] Hua, J. G. et al. Fast fabrication of optical vortex generators by femtosecond laser ablation. Applied Surface Science 475, 660-665 (2019). doi: 10.1016/j.apsusc.2018.12.249
[71] Hua, J. G. et al. Free‐form micro‐optics out of crystals: femtosecond laser 3D sculpturing. Advanced Functional Materials 32, 2200255 (2022). doi: 10.1002/adfm.202200255
[72] Qiu, J. F. et al. Fabrication of high fill factor cylindrical microlens array with isolated thermal reflow. Applied Optics 57, 7296-7302 (2018). doi: 10.1364/AO.57.007296
[73] Huang, S. Z. et al. Fabrication of high quality aspheric microlens array by dose-modulated lithography and surface thermal reflow. Optics & Laser Technology 100, 298-303 (2018).
[74] Grigaliūnas, V. et al. Microlens fabrication by 3D electron beam lithography combined with thermal reflow technique. Microelectronic Engineering 164, 23-29 (2016). doi: 10.1016/j.mee.2016.07.003
[75] Liu, X. Q. et al. Etching-assisted femtosecond laser modification of hard materials. Opto-Electronic Advances 2, 190021 (2019).
[76] Liu, X. Q. et al. Optical nanofabrication of concave microlens arrays. Laser & Photonics Reviews 13, 1800272 (2019).
[77] Lian, Z. J. et al. Rapid fabrication of semiellipsoid microlens using thermal reflow with two different photoresists. Microelectronic Engineering 115, 46-50 (2014). doi: 10.1016/j.mee.2013.10.025
[78] Hua, J. G. et al. Laser-induced cavitation-assisted true 3D nano-sculpturing of hard materials. Small 19, 2207968 (2023). doi: 10.1002/smll.202207968
[79] Wang, B. X. et al. Rapid fabrication of smooth micro-optical components on glass by etching-assisted femtosecond laser modification. Materials 15, 678 (2022). doi: 10.3390/ma15020678
[80] Skora, J. L. et al. High-fidelity glass micro-axicons fabricated by laser-assisted wet etching. Optics Express 30, 3749-3759 (2022). doi: 10.1364/OE.446740
[81] Yong, J. L. et al. A review of femtosecond-laser-induced underwater superoleophobic surfaces. Advanced Materials Interfaces 5, 1701370 (2018). doi: 10.1002/admi.201701370
[82] Wang, Q. et al. Reconfigurable phase-change photomask for grayscale photolithography. Applied Physics Letters 110, 201110 (2017). doi: 10.1063/1.4983198
[83] Sundaram, S. K. & Mazur, E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nature Materials 1, 217-224 (2002). doi: 10.1038/nmat767
[84] Wang, Q. et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nature Photonics 10, 60-65 (2016). doi: 10.1038/nphoton.2015.247
[85] Wu, R. B. et al. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness. Nanomaterials 8, 910 (2018). doi: 10.3390/nano8110910
[86] Li, L. Q., Kong, W. J. & Chen, F. Femtosecond laser-inscribed optical waveguides in dielectric crystals: a concise review and recent advances. Advanced Photonics 4, 024002 (2022).
[87] Hua, J. G. et al. Characterization of refractive index change induced by femtosecond laser in lithium niobate. Journal of Laser Micro/Nanoengineering 12, 207-211 (2017).
[88] Wei, D. Z. et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nature Photonics 12, 596-600 (2018). doi: 10.1038/s41566-018-0240-2
[89] Xiong, Z., Kunwar, P. & Soman, P. Hydrogel-based diffractive optical elements (hDOEs) using rapid digital photopatterning. Advanced Optical Materials 9, 2001217 (2021). doi: 10.1002/adom.202001217
[90] Bückmann, T. et al. Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Advanced Materials 24, 2710-2714 (2012). doi: 10.1002/adma.201200584
[91] Wu, D. et al. Bioinspired fabrication of high-quality 3D artificial compound eyes by voxel-modulation femtosecond laser writing for distortion-free wide-field-of-view imaging. Advanced Optical Materials 2, 751-758 (2014). doi: 10.1002/adom.201400175
[92] Rodríguez, S. Redefining microfabrication of high‐precision optics. PhotonicsViews 17, 36-39 (2020). doi: 10.1002/phvs.202000003
[93] Aderneuer, T., Fernández, O. & Ferrini, R. Two-photon grayscale lithography for free-form micro-optical arrays. Optics Express 29, 39511-39520 (2021). doi: 10.1364/OE.440251
[94] Geng, Q. et al. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nature Communications 10, 2179 (2019). doi: 10.1038/s41467-019-10249-2
[95] Matsuo, S., Juodkazis, S. & Misawa, H. Femtosecond laser microfabrication of periodic structures using a microlens array. Applied Physics A 80, 683-685 (2005). doi: 10.1007/s00339-004-3108-x
[96] Maibohm, C. et al. Multi-beam two-photon polymerization for fast large area 3D periodic structure fabrication for bioapplications. Scientific Reports 10, 8740 (2020). doi: 10.1038/s41598-020-64955-9
[97] Kato, J. I. et al. Multiple-spot parallel processing for laser micronanofabrication. Applied Physics Letters 86, 044102 (2005). doi: 10.1063/1.1855404
[98] Yang, L. et al. Two-photon polymerization of microstructures by a non-diffraction multifoci pattern generated from a superposed Bessel beam. Optics Letters 42, 743-746 (2017). doi: 10.1364/OL.42.000743
[99] Yang, L. et al. Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator. Optics and Lasers in Engineering 70, 26-32 (2015).
[100] Xu, B. et al. Hybrid femtosecond laser fabrication of a size-tunable microtrap chip with a high-trapping retention rate. Optics Letters 45, 1071-1074 (2020). doi: 10.1364/OL.386095
[101] Wang, Z. P. et al. High efficiency and scalable fabrication of fresnel zone plates using holographic femtosecond pulses. Nanophotonics 11, 3081-3091 (2022). doi: 10.1515/nanoph-2022-0112
[102] Liu, Y. H. et al. λ/12 super resolution achieved in maskless optical projection nanolithography for efficient cross-scale patterning. Nano Letters 21, 3915-3921 (2021).
[103] Lim, M. P. et al. Augmenting mask-based lithography with direct laser writing to increase resolution and speed. Optics Express 26, 7085-7090 (2018). doi: 10.1364/OE.26.007085
[104] Schmidt, J. et al. Multiscale ceramic components from preceramic polymers by hybridization of vat polymerization-based technologies. Additive Manufacturing 30, 100913 (2019). doi: 10.1016/j.addma.2019.100913
[105] Tan, M. Y. et al. Cross-scale and cross-precision structures/systems fabricated by high-efficiency and low-cost hybrid 3D printing technology. Additive Manufacturing 59, 103169 (2022). doi: 10.1016/j.addma.2022.103169
[106] Tan, M. Y. et al. Microflow multi-layer diffraction optical element processed by hybrid manufacturing technology. Optics Express 30, 24689-24702 (2022). doi: 10.1364/OE.464192
[107] Lee, K. S. et al. Advances in 3D nano/microfabrication using two-photon initiated polymerization. Progress in Polymer Science 33, 631-681 (2008). doi: 10.1016/j.progpolymsci.2008.01.001
[108] Sarhadi, A., Hattel, J. H. & Hansen, H. N. Three-dimensional modeling of glass lens molding. International Journal of Applied Glass Science 6, 182-195 (2015). doi: 10.1111/ijag.12110
[109] Zhou, X. Q., Hou, Y. H. & Lin, J. Q. A review on the processing accuracy of two-photon polymerization. AIP Advances 5, 030701 (2015). doi: 10.1063/1.4916886
[110] Zheng, X. et al. An adaptive direct slicing method based on tilted voxel of two-photon polymerization. The International Journal of Advanced Manufacturing Technology 96, 521-530 (2018). doi: 10.1007/s00170-017-1507-3
[111] Wu, D. et al. High numerical aperture microlens arrays of close packing. Applied Physics Letters 97, 031109 (2010). doi: 10.1063/1.3464979
[112] Park, S. H. et al. Subregional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerization. Applied Physics Letters 87, 154108 (2005). doi: 10.1063/1.2103393
[113] Jing, X. et al. Adaptive slicing method for three-dimensional microstructures with free-form surfaces in two photon polymerization microfabrication. Nano 14, 1950006 (2019). doi: 10.1142/S1793292019500061
[114] Malinauskas, M. et al. Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization. Journal of Optics 12, 124010 (2010). doi: 10.1088/2040-8978/12/12/124010
[115] Guo, R. et al. Micro lens fabrication by means of femtosecond two photon photopolymerization. Optics Express 14, 810-816 (2006). doi: 10.1364/OPEX.14.000810
[116] Liao, C. Y. et al. Two-dimensional slicing method to speed up the fabrication of micro-objects based on two-photon polymerization. Applied Physics Letters 91, 033108 (2007). doi: 10.1063/1.2759269
[117] Yang, D. Y. et al. Ultraprecise microreproduction of a three-dimensional artistic sculpture by multipath scanning method in two-photon photopolymerization. Applied Physics Letters 90, 013113 (2007). doi: 10.1063/1.2425022
[118] Geisler, E. , Lecompère, M. & Soppera, O. 3D printing of optical materials by processes based on photopolymerization: materials, technologies, and recent advances. Photonics Research 10, 06001344 (2022).
[119] Zhao, Y. Y. et al. Three-dimensional Luneburg lens at optical frequencies. Laser & Photonics Reviews 10, 665-672 (2016).
[120] Sartison, M. 3D printed micro-optics for quantum technology: Optimised coupling of single quantum dot emission into a single-mode fibre. Light: Advanced Manufacturing 2, 6 (2021).
[121] Schmid, M. et al. 3D printed hybrid refractive/diffractive achromat and apochromat for the visible wavelength range. Optics Letters 46, 2485-2488 (2021).
[122] Tian, Z. N. et al. Mirror-rotation-symmetrical single-focus spiral zone plates. Optics Letters 43, 3116-3119 (2018). doi: 10.1364/OL.43.003116
[123] Baldacchini, T. et al. Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization. Journal of Applied Physics 95, 6072-6076 (2004). doi: 10.1063/1.1728296
[124] Cao, J. J. et al. Bioinspired Zoom Compound Eyes Enable Variable-Focus Imaging. ACS Applied Materials & Interfaces 12, 10107-10117 (2020).
[125] Ma, Z. C. et al. Smart compound eyes enable tunable imaging. Advanced Functional Materials 29, 1903340 (2019). doi: 10.1002/adfm.201903340
[126] Sun, Y. L. et al. Dynamically tunable protein microlenses. Angewandte Chemie International Edition 51, 1558-1562 (2012). doi: 10.1002/anie.201105925
[127] Kotz, F. et al. Two-photon polymerization of nanocomposites for the fabrication of transparent fused silica glass microstructures. Advanced Materials 33, 2006341 (2021). doi: 10.1002/adma.202006341
[128] Wen, X. W. et al. 3D-printed silica with nanoscale resolution. Nature Materials 20, 1506-1511 (2021).
[129] Zhang, H. et al. Overview of 3D-printed silica glass. Micromachines 13, 81 (2022). doi: 10.3390/mi13010081
[130] Hong, Z. H. et al. Three-dimensional printing of glass micro-optics. Optica 8, 904-910 (2021). doi: 10.1364/OPTICA.422955
[131] Doualle, T. , André, J. C. & Gallais, L. 3D printing of silica glass through a multiphoton polymerization process. Optics Letters 46, 364-367 (2021).
[132] Kotz, F. et al. Liquid glass: a facile soft replication method for structuring glass. Advanced Materials 28, 4646-4650 (2016). doi: 10.1002/adma.201506089
[133] Gonzalez-Hernandez, D. et al. Laser 3D printing of inorganic free-form micro-optics. Photonics 8, 577 (2021). doi: 10.3390/photonics8120577
[134] Xiong, W. et al. Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation. Light:Science & Applications 1, e6 (2012).
[135] Zhou, G. Y., Ventura, M. J. & Gu, M. Photonic bandgap properties of void-based body-centered-cubic photonic crystals in polymer. Optics Express 13, 4390-4395 (2005). doi: 10.1364/OPEX.13.004390
[136] Yong, J. L. et al. Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser. ACS Applied Materials & Interfaces 5, 9382-9385 (2013).
[137] Liu, X. F., Yang, Y. T. & Qiu, J. R. Emerging techniques for customized fabrication of glass. Journal of Non-Crystalline Solids:X 15, 100114 (2022). doi: 10.1016/j.nocx.2022.100114
[138] Kotz, F. et al. Glassomer-processing fused silica glass like a polymer. Advanced Materials 30, 1707100 (2018). doi: 10.1002/adma.201707100
[139] Bhanvadia, A. A. et al. High-resolution stereolithography using a static liquid constrained interface. Communications Materials 2, 41 (2021). doi: 10.1038/s43246-021-00145-y
[140] Kotz, F. et al. Three-dimensional printing of transparent fused silica glass. Nature 544, 337-339 (2017). doi: 10.1038/nature22061
[141] Balčas, G. et al. Fabrication of glass‐ceramic 3D micro‐optics by combining laser lithography and calcination. Advanced Functional Materials 33, 2215230 (2023). doi: 10.1002/adfm.202215230
[142] Lin, G. et al. Glass-ceramics with embedded gallium/aluminum nanoalloys formed by heat treatment and femtosecond laser irradiation. Journal of the American Ceramic Society 95, 776-781 (2012). doi: 10.1111/j.1551-2916.2011.04970.x
[143] Gailevičius, D. et al. Additive-manufacturing of 3D glass-ceramics down to nanoscale resolution. Nanoscale Horizons 4, 647-651 (2019). doi: 10.1039/C8NH00293B
[144] Cooperstein, I. et al. Additive manufacturing of transparent silica glass from solutions. ACS Applied Materials & Interfaces 10, 18879-18885 (2018).
[145] Bauer, J., Crook, C. & Baldacchini, T. A sinterless, low-temperature route to 3D print nanoscale optical-grade glass. Science 380, 960-966 (2023). doi: 10.1126/science.abq3037
[146] Fang, G. et al. Femtosecond laser direct writing of 3D silica‐like microstructure from hybrid epoxy cyclohexyl POSS. Advanced Materials Technologies 3, 1700271 (2018). doi: 10.1002/admt.201700271
[147] Huang, P. H. et al. Three-dimensional printing of silica glass with sub-micrometer resolution. Nature Communications 14, 3305 (2023). doi: 10.1038/s41467-023-38996-3
[148] Jin, F. et al. λ/30 inorganic features achieved by multi-photon 3D lithography. Nature Communications 13, 1357 (2022).
[149] Ma, Z. C. et al. Femtosecond-laser direct writing of metallic micro/nanostructures: from fabrication strategies to future applications. Small Methods 2, 1700413 (2018). doi: 10.1002/smtd.201700413
[150] Low, M. J. et al. Laser-induced reduced-graphene-oxide micro-optics patterned by femtosecond laser direct writing. Applied Surface Science 526, 146647 (2020). doi: 10.1016/j.apsusc.2020.146647
[151] Low, M. J. et al. Refractive-diffractive hybrid optics array: comparative analysis of simulation and experiments. Journal of Optics 24, 055401 (2022). doi: 10.1088/2040-8986/ac5926
[152] Zhang, Y. L. et al. Electro-responsive actuators based on graphene. The Innovation 2, 100168 (2021).
[153] Jiang, L. J. et al. Femtosecond laser direct writing in transparent materials based on nonlinear absorption. MRS Bulletin 41, 975-983 (2016). doi: 10.1557/mrs.2016.272
[154] Li, Q. S. et al. Phase-type fresnel zone plate with multi-wavelength imaging embedded in fluoroaluminate glass fabricated via ultraviolet femtosecond laser lithography. Micromachines 12, 1362 (2021). doi: 10.3390/mi12111362
[155] Li, Q. K. et al. Multilevel phase-type diffractive lens embedded in sapphire. Optics Letters 42, 3832-3835 (2017). doi: 10.1364/OL.42.003832
[156] Liu, X. Q. et al. Dry-etching-assisted femtosecond laser machining. Laser & Photonics Reviews 11, 1600115 (2017).
[157] Deng, Z. F. et al. Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining. Optics Letters 40, 1928-1931 (2015). doi: 10.1364/OL.40.001928
[158] Pan, A. et al. Fabrication of concave spherical microlenses on silicon by femtosecond laser irradiation and mixed acid etching. Optics Express 22, 15245-15250 (2014). doi: 10.1364/OE.22.015245
[159] Krol, D. M. Femtosecond laser modification of glass. Journal of Non-Crystalline Solids 354, 416-424 (2008). doi: 10.1016/j.jnoncrysol.2007.01.098
[160] Trusovas, R. et al. Recent advances in laser utilization in the chemical modification of graphene oxide and its applications. Advanced Optical Materials 4, 37-65 (2016). doi: 10.1002/adom.201500469
[161] Tan, D. Z. et al. Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications. Progress in Materials Science 76, 154-228 (2016). doi: 10.1016/j.pmatsci.2015.09.002
[162] Lin, D. M. et al. Dielectric gradient metasurface optical elements. Science 345, 298-302 (2014). doi: 10.1126/science.1253213
[163] Khorasaninejad, M. et al. Achromatic metasurface lens at telecommunication wavelengths. Nano Letters 15, 5358-5362 (2015). doi: 10.1021/acs.nanolett.5b01727
[164] Zhou, J. D. et al. A library of atomically thin metal chalcogenides. Nature 556, 355-359 (2018). doi: 10.1038/s41586-018-0008-3
[165] Cong, S. et al. Surface enhanced raman scattering revealed by interfacial charge-transfer transitions. The Innovation 1, 100051 (2020).
[166] Lin, H. et al. Diffraction-limited imaging with monolayer 2D material-based ultrathin flat lenses. Light:Science & Applications 9, 137 (2020).
[167] West, P. R. et al. All-dielectric subwavelength metasurface focusing lens. Optics Express 22, 26212-26221 (2014). doi: 10.1364/OE.22.026212
[168] Kang, S., Vora, K. & Mazur, E. One-step direct-laser metal writing of sub-100 nm 3D silver nanostructures in a gelatin matrix. Nanotechnology 26, 121001 (2015). doi: 10.1088/0957-4484/26/12/121001
[169] Liu, X. J. et al. Recent advances in stimuli‐responsive shape‐morphing hydrogels. Advanced Functional Materials 32, 2203323 (2022). doi: 10.1002/adfm.202203323
[170] Han, F. et al. Three-dimensional nanofabrication via ultrafast laser patterning and kinetically regulated material assembly. Science 378, 1325-1331 (2022). doi: 10.1126/science.abm8420
[171] Malinauskas, M. et al. A femtosecond laser-induced two-photon photopolymerization technique for structuring microlenses. Journal of Optics 12, 035204 (2010). doi: 10.1088/2040-8978/12/3/035204
[172] Berglund, G. D. & Tkaczyk, T. S. Fabrication of optical components using a consumer-grade lithographic printer. Optics Express 27, 30405-30420 (2019). doi: 10.1364/OE.27.030405
[173] Liu, M. N. et al. Etching-assisted femtosecond laser microfabrication. Chinese Physics B 27, 094212 (2018). doi: 10.1088/1674-1056/27/9/094212
[174] Kim, J. Y. et al. Directly fabricated multi-scale microlens arrays on a hydrophobic flat surface by a simple ink-jet printing technique. Journal of Materials Chemistry 22, 3053-3058 (2012). doi: 10.1039/c2jm15576a
[175] Zhou, F. et al. Additive manufacturing of a 3D terahertz gradient‐refractive index lens. Advanced Optical Materials 4, 1034-1040 (2016). doi: 10.1002/adom.201600033
[176] Xu, J. J. et al. High curvature concave–convex microlens. IEEE Photonics Technology Letters 27, 2465-2468 (2015). doi: 10.1109/LPT.2015.2470195
[177] Chen, Z. H. et al. Variable focus convex microlens array on K9 glass substrate based on femtosecond laser processing and hot embossing lithography. Optics Letters 47, 22-25 (2022). doi: 10.1364/OL.448344
[178] Wu, D. et al. 100% Fill-factor aspheric microlens arrays (AMLA) with Sub-20-nm precision. IEEE Photonics Technology Letters 21, 1535-1537 (2009).
[179] Schmid, M. D. et al. 3D direct laser writing of highly absorptive photoresist for miniature optical apertures. Advanced Functional Materials 33, 2211159 (2023).
[180] Aieta, F. et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342-1345 (2015). doi: 10.1126/science.aaa2494
[181] Bianchi, S. et al. Focusing and imaging with increased numerical apertures through multimode fibers with micro-fabricated optics. Optics Letters 38, 4935-4938 (2013). doi: 10.1364/OL.38.004935
[182] Zhang, B. et al. Femtosecond laser modification of 6H–SiC crystals for waveguide devices. Applied Physics Letters 116, 111903 (2020). doi: 10.1063/1.5145025
[183] Atwater, J. H. et al. Microphotonic parabolic light directors fabricated by two-photon lithography. Applied Physics Letters 99, 151113 (2011). doi: 10.1063/1.3648115
[184] Zheng, Q. et al. Rapid prototyping of a dammann grating in DMD-based maskless lithography. IEEE Photonics Journal 11, 2400410 (2019).
[185] Sanli, U. T. et al. 3D nanoprinted plastic kinoform X-Ray optics. Advanced Materials 30, 1802503 (2018).
[186] Huang, Y. et al. Multi-value phase grating fabrication using direct laser writing for generating a two-dimensional focal spot array. Journal of Optics 24, 055601 (2022). doi: 10.1088/2040-8986/ac5dd4
[187] Huang, L. et al. Technology of static oblique lithography used to improve the fidelity of lithography pattern based on DMD projection lithography. Optics & Laser Technology 157, 108666 (2023).
[188] Hu, Z. Y. et al. Broad‐bandwidth micro‐diffractive optical elements. Laser & Photonics Reviews 16, 2100537 (2022).
[189] Mohacsi, I. et al. Fabrication and characterization of high-efficiency double-sided blazed x-ray optics. Optics Letters 41, 281-284 (2016). doi: 10.1364/OL.41.000281
[190] Wu, D. et al. High efficiency multilevel phase-type fractal zone plates. Optics Letters 33, 2913-2915 (2008). doi: 10.1364/OL.33.002913
[191] Sun, Y. L. et al. Protein-based soft micro-optics fabricated by femtosecond laser direct writing. Light:Science & Applications 3, e129 (2014).
[192] Xiong, Z. et al. Femtosecond Laser Densification of Hydrogels to Generate Customized Volume Diffractive Gratings. ACS Applied Materials & Interfaces 14, 29377-29385 (2022).
[193] Pan, M. Y. et al. Dielectric metalens for miniaturized imaging systems: progress and challenges. Light:Science & Applications 11, 195 (2022).
[194] Hadibrata, W. et al. Inverse design and 3D printing of a metalens on an optical fiber tip for direct laser lithography. Nano Letters 21, 2422-2428 (2021). doi: 10.1021/acs.nanolett.0c04463
[195] Balli, F. et al. A hybrid achromatic metalens. Nature Communications 11, 3892 (2020). doi: 10.1038/s41467-020-17646-y
[196] Wei, S. B. et al. A varifocal graphene metalens for broadband zoom imaging covering the entire visible region. ACS Nano 15, 4769-4776 (2021). doi: 10.1021/acsnano.0c09395
[197] Schlickriede, C. et al. Imaging through nonlinear metalens using second harmonic generation. Advanced Materials 30, 1703843 (2018). doi: 10.1002/adma.201703843
[198] Paniagua-Domínguez, R. et al. A metalens with a near-unity numerical aperture. Nano Letters 18, 2124-2132 (2018). doi: 10.1021/acs.nanolett.8b00368
[199] Faklis, D. & Morris, G. M. Spectral properties of multiorder diffractive lenses. Applied Optics 34, 2462-2468 (1995). doi: 10.1364/AO.34.002462
[200] Nair, S. P. et al. 3D printing mesoscale optical components with a low-cost resin printer integrated with a fiber-optic taper. ACS Photonics 9, 2024-2031 (2022).
[201] Sun, Y. L. et al. Tunable protein harmonic diffractive micro-optical elements. Optics Letters 37, 2973-2975 (2012). doi: 10.1364/OL.37.002973
[202] Hua, J. G. et al. Centimeter-sized aplanatic hybrid diffractive-refractive lens. IEEE Photonics Technology Letters 31, 3-6 (2019). doi: 10.1109/LPT.2019.2932366
[203] Tian, Z. N. et al. Hybrid refractive–diffractive optical vortex microlens. IEEE Photonics Technology Letters 28, 2299-2302 (2016). doi: 10.1109/LPT.2016.2591238
[204] Gissibl, T. et al. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres. Nature Communications 7, 11763 (2016). doi: 10.1038/ncomms11763
[205] Li, J. W. et al. 3D-printed micro lens-in-lens for in vivo multimodal microendoscopy. Small 18, 2107032 (2022).
[206] Zhou, Z. T. et al. The use of functionalized silk fibroin films as a platform for optical diffraction-based sensing applications. Advanced Materials 29, 1605471 (2017). doi: 10.1002/adma.201605471
[207] Keum, D. et al. Xenos peckii vision inspires an ultrathin digital camera. Light:Science & Applications 7, 80 (2018).
[208] Wang, D. Y. et al. 3D printing challenges in enabling rapid response to public health emergencies. Innovation 1, 100056 (2020).
[209] Rekštytė, S., Malinauskas, M. & Juodkazis, S. Three-dimensional laser micro-sculpturing of silicone: towards bio-compatible scaffolds. Optics Express 21, 17028-17041 (2013). doi: 10.1364/OE.21.017028
[210] Hernandez-Cedillo, L. et al. Peculiarities of integrating mechanical valves in microfluidic channels using direct laser writing. Applied Bionics and Biomechanics 2022, 9411024 (2022).
[211] Nair, S. P. et al. 3D printed fiber sockets for plug and play micro-optics. International Journal of Extreme Manufacturing 3, 015301 (2020).
[212] Tan, M. Y. et al. Double-sided femtosecond 3D printing technology based on a specific mask. Optics and Lasers in Engineering 161, 107328 (2023). doi: 10.1016/j.optlaseng.2022.107328
[213] Xiong, C. et al. Optical fiber integrated functional micro-/nanostructure induced by two-photon polymerization. Frontiers in Materials 7, 586496 (2020). doi: 10.3389/fmats.2020.586496
[214] Sivankutty, S. et al. Miniature 120-beam coherent combiner with 3D-printed optics for multicore fiber-based endoscopy. Optics Letters 46, 4968-4971 (2021). doi: 10.1364/OL.435063
[215] Gissibl, T. et al. Two-photon direct laser writing of ultracompact multi-lens objectives. Nature Photonics 10, 554-560 (2016). doi: 10.1038/nphoton.2016.121
[216] Li, B. Z. et al. Femtosecond laser 3D printed micro objective lens for ultrathin fiber endoscope. Fundamental Research (in the press).
[217] Kiekens, K. C. & Barton, J. K. 3D printed lens for depth of field imaging. OSA Continuum 2, 3019-3025 (2019).
[218] Thiele, S. et al. 3D printed stacked diffractive microlenses. Optics Express 27, 35621-35630 (2019).
[219] Galvez, D. et al. Characterizing close-focus lenses for microendoscopy. Journal of Optical Microsystems 3, 011003 (2023).
[220] Jin, G. X. et al. Femtosecond laser fabrication of 3D templates for mass production of artificial compound eyes. Nanotechnology and Precision Engineering 2, 110-117 (2019). doi: 10.1016/j.npe.2019.10.005
[221] Thiele, S. et al. 3D-printed eagle eye: compound microlens system for foveated imaging. Science Advances 3, e1602655 (2017).
[222] Li, J. W. et al. Ultrathin monolithic 3D printed optical coherence tomography endoscopy for preclinical and clinical use. Light:Science & Applications 9, 124 (2020).
[223] Hong, Z. H. et al. Bio‐inspired compact, high‐resolution snapshot hyperspectral imaging system with 3D printed glass lightguide array. Advanced Optical Materials 11, 2300156 (2023). doi: 10.1002/adom.202300156
[224] Hu, Y. L. et al. All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching. Advanced Optical Materials 6, 1701299 (2018). doi: 10.1002/adom.201701299
[225] Wu, D. et al. Facile creation of hierarchical PDMS microstructures with extreme underwater superoleophobicity for anti-oil application in microfluidic channels. Lab on a Chip 11, 3873-3879 (2011). doi: 10.1039/c1lc20226j
[226] Wu, D. et al. Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices. Lab on a Chip 9, 2391-2394 (2009). doi: 10.1039/b902159k
[227] Lu, D. X. et al. Solvent-tunable PDMS microlens fabricated by femtosecond laser direct writing. Journal of Materials Chemistry C 3, 1751-1756 (2015). doi: 10.1039/C4TC02737J
[228] Zhao, X. Y. et al. Tunable optofluidic microbubble lens. Optics Express 30, 8317-8329 (2022). doi: 10.1364/OE.453555
[229] Wu, D. et al. In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting. Light:Science & Applications 4, e228 (2015).
[230] Wu, D. et al. Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship‐in‐a‐bottle biochip. Laser & Photonics Reviews 8, 458-467 (2014).
[231] Royon, A. et al. Silver clusters embedded in glass as a perennial high capacity optical recording medium. Advanced Materials 22, 5282-5286 (2010). doi: 10.1002/adma.201002413
[232] Zhang, J. Y. et al. Seemingly unlimited lifetime data storage in nanostructured glass. Physical Review Letters 112, 033901 (2014). doi: 10.1103/PhysRevLett.112.033901
[233] Chan, J. W. et al. Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses. Journal of the American Ceramic Society 85, 1037-1040 (2004). doi: 10.1111/j.1151-2916.2002.tb00219.x
[234] Huang, X. J. et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nature Photonics 14, 82-88 (2020). doi: 10.1038/s41566-019-0538-8
[235] Weber, K. et al. Single mode fiber based delivery of OAM light by 3D direct laser writing. Optics Express 25, 19672-19679 (2017). doi: 10.1364/OE.25.019672
[236] Liu, Z. Y. et al. A beam homogenizer for digital micromirror device lithography system based on random freeform microlenses. Optics Communications 443, 211-215 (2019). doi: 10.1016/j.optcom.2019.03.049
[237] Zhang, H. et al. Random silica-glass microlens arrays based on the molding technology of photocurable nanocomposites. ACS Applied Materials & Interfaces 15, 19230-19240 (2023).
[238] Gissibl, T., Schmid, M. & Giessen, H. Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing. Optica 3, 448-451 (2016). doi: 10.1364/OPTICA.3.000448
[239] Thiele, S. et al. Ultra-compact on-chip LED collimation optics by 3D femtosecond direct laser writing. Optics Letters 41, 3029-3032 (2016). doi: 10.1364/OL.41.003029
[240] Hamadani, B. H. , Seppala, J. & Zarobila, C. 3D printed optical concentrators for LED arrays. OSA Continuum 3, 2022-2035 (2020).
[241] Lightman, S. et al. Shaping of light beams by 3D direct laser writing on facets of nonlinear crystals. Optics Letters 40, 4460-4463 (2015). doi: 10.1364/OL.40.004460
[242] Jung, N. T. et al. 3D quantum dot-lens fabricated by stereolithographic printing with in-situ UV curing for lighting and displays. Composites Part B: Engineering 226, 109350 (2021).
[243] Fischbach, S. et al. Single quantum dot with microlens and 3D-printed micro-objective as integrated bright single-photon source. ACS Photonics 4, 1327-1332 (2017). doi: 10.1021/acsphotonics.7b00253
[244] Schäffner, D. et al. Arrays of individually controllable optical tweezers based on 3D-printed microlens arrays. Optics Express 28, 8640-8645 (2020). doi: 10.1364/OE.386243
[245] Lightman, S. et al. Miniature wide-spectrum mode sorter for vortex beams produced by 3D laser printing. Optica 4, 605-610 (2017). doi: 10.1364/OPTICA.4.000605
[246] Yu, S. L. et al. On-chip optical tweezers based on freeform optics. Optica 8, 409-414 (2021). doi: 10.1364/OPTICA.418837
[247] Asadollahbaik, A. et al. Highly efficient dual-fiber optical trapping with 3D printed diffractive fresnel lenses. ACS Photonics 7, 88-97 (2020).
[248] Xu, Y. L. et al. 3D-printed facet-attached microlenses for advanced photonic system assembly. Light: Advanced Manufacturing 4, 3 (2023).
[249] Toulouse, A. et al. 3D-printed miniature spectrometer for the visible range with a 100 × 100 μm2 footprint. Light: Advanced Manufacturing 2, 2 (2021).
[250] Hong, Z. H. et al. High-precision printing of complex glass imaging optics with precondensed liquid silica resin. Advanced Science 9, 2105595 (2022). doi: 10.1002/advs.202105595
[251] Flamini, F. et al. Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining. Light:Science & Applications 4, e354 (2015).
[252] Zhang, X. L. et al. Non-Abelian braiding on photonic chips. Nature Photonics 16, 390-395 (2022). doi: 10.1038/s41566-022-00976-2
[253] Li, M. et al. On-chip path encoded photonic quantum Toffoli gate. Photonics Research 10, 1533-1542 (2022). doi: 10.1364/PRJ.452539
[254] Mader, M. et al. High-throughput injection molding of transparent fused silica glass. Science 372, 182-186 (2021). doi: 10.1126/science.abf1537
[255] Zhang, D. et al. Highly efficient phosphor-glass composites by pressureless sintering. Nature Communications 11, 2805 (2020). doi: 10.1038/s41467-020-16649-z
[256] Xu, S. et al. High-efficiency fabrication of geometric phase elements by femtosecond-laser direct writing. Nanomaterials 10, 1737 (2020). doi: 10.3390/nano10091737
[257] De Marzi, A. et al. Hybrid additive manufacturing for the fabrication of freeform transparent silica glass components. Additive Manufacturing 54, 102727 (2022). doi: 10.1016/j.addma.2022.102727
[258] Feng, J. W. et al. Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications. International Journal of Extreme Manufacturing 4, 022001 (2022). doi: 10.1088/2631-7990/ac5be6
[259] Toombs, J. T. et al. Volumetric additive manufacturing of silica glass with microscale computed axial lithography. Science 376, 308-312 (2022). doi: 10.1126/science.abm6459
[260] Kunwar, P. et al. Hybrid laser printing of 3D, multiscale, multimaterial hydrogel structures. Advanced Optical Materials 7, 1900656 (2019). doi: 10.1002/adom.201900656
[261] Kang, W. J. , Hong, Z. H. & Liang, R. G. 3D printing optics with hybrid material. Applied Optics 60, 1809-1813 (2021).
[262] Yang, L. et al. Multi-material multi-photon 3D laser micro- and nanoprinting. Light:Advanced Manufacturing 2, 17 (2021).
[263] Ouyang, W. Q. et al. Ultrafast 3D nanofabrication via digital holography. Nature Communications 14, 1716 (2023). doi: 10.1038/s41467-023-37163-y
[264] Maier, P. et al. 3D-printed facet-attached optical elements for connecting VCSEL and photodiodes to fiber arrays and multi-core fibers. Optics Express 30, 46602-46625 (2022).
[265] Singer, S. et al. 3D-printed facet-attached optical elements for beam shaping in optical phased arrays. Optics Express 30, 46564-46574 (2022).
[266] Li, Q. Y. et al. Direct 3D-printing of microlens on single mode polarization-stable VCSEL chip for miniaturized optical spectroscopy. Journal of Optical Microsystems 3, 033501 (2023).