[1] Rees P, Wills JW, Brown MR, Tonkin J, Holton MD et al. Nanoparticle vesicle encoding for imaging and tracking cell populations. Nat Methods 2014; 11: 1177–1181. doi: 10.1038/nmeth.3105
[2] Brites CDS, Fuertes MC, Angelomé PC, Martínez ED, Lima PP et al. Tethering luminescent thermometry and plasmonics: light manipulation to assess real-time thermal flow in nanoarchitectures. Nano Lett 2017; 17: 4746–4752. doi: 10.1021/acs.nanolett.7b01433
[3] Barbiero M, Castelletto S, Gan XS, Gu M. Spin-manipulated nanoscopy for single nitrogen-vacancy center localizations in nanodiamonds. Light Sci Appl 2017; 6: e17085. doi: 10.1038/lsa.2017.85
[4] Liu YJ, Lu YQ, Yang XS, Zheng XL, Wen SH et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 2017; 543: 229–233. doi: 10.1038/nature21366
[5] Hinde E, Thammasiraphop K, Duong HTT, Yeow J, Karagoz B et al. Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release. Nat Nanotechnol 2017; 12: 81–89. doi: 10.1038/nnano.2016.160
[6] Bhatia D, Arumugam S, Nasilowski M, Joshi H, Wunder C et al. Quantum dot-loaded monofunctionalized DNA icosahedra for single-particle tracking of endocytic pathways. Nat Nanotechnol 2016; 11: 1112–1119. doi: 10.1038/nnano.2016.150
[7] Nam SH, Bae YM, Park YI, Kim JH, Kim HM et al. Long-term real-time tracking of lanthanide ion doped upconverting nanoparticles in living cells. Angew Chem Int Ed 2011; 50: 6093–6097. doi: 10.1002/anie.201007979
[8] Jo HL, Song YH, Park J, Jo EJ, Goh Y et al. Fast and background-free three-dimensional (3D) live-cell imaging with lanthanide-doped upconverting nanoparticles. Nanoscale 2015; 7: 19397–19402. doi: 10.1039/C5NR05875A
[9] Albanese A, Chan WCW. Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano 2011; 5: 5478–5489. doi: 10.1021/nn2007496
[10] Liu MM, Li Q, Liang L, Li J, Wang K et al. Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging. Nat Commun 2017; 8: 15646. doi: 10.1038/ncomms15646
[11] Lowe AR, Siegel JJ, Kalab P, Siu M, Weis K et al. Selectivity mechanism of the nuclear pore complex characterized by single cargo tracking. Nature 2010; 467: 600–603. doi: 10.1038/nature09285
[12] Fu CC, Lee HY, Chen K, Lim TS, Wu HY et al. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc Natl Acad Sci USA 2007; 104: 727–732. doi: 10.1073/pnas.0605409104
[13] Zhou B, Shi BY, Jin DY, Liu XG. Controlling upconversion nanocrystals for emerging applications. Nat Nanotechnol 2015; 10: 924–936. doi: 10.1038/nnano.2015.251
[14] Yang YM, Velmurugan B, Liu XG, Xing BG. NIR photoresponsive crosslinked upconverting nanocarriers toward selective intracellular drug release. Small 2013; 9: 2937–2944. doi: 10.1002/smll.201201765
[15] van de Rijke F, Zijlmans H, Li S, Vail T, Raap AK et al. Up-converting phosphor reporters for nucleic acid microarrays. Nat Biotechnol 2001; 19: 273–276. doi: 10.1038/85734
[16] Nyk M, Kumar R, Ohulchanskyy TY, Bergey EJ, Prasad PN. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett 2008; 8: 3834–3838. doi: 10.1021/nl802223f
[17] Idris NM, Gnanasammandhan MK, Zhang J, Ho PC, Mahendran R et al. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat Med 2012; 18: 1580–1585. doi: 10.1038/nm.2933
[18] Watson JM, Marion SL, Rice PF, Utzinger U, Brewer MA et al. Two-photon excited fluorescence imaging of endogenous contrast in a mouse model of ovarian cancer. Lasers Surg Med 2013; 45: 155–166. doi: 10.1002/lsm.22115
[19] Moerner WE, Fromm DP. Methods of single-molecule fluorescence spectroscopy and microscopy. Rev Sci Instrum 2003; 74: 3597–3619. doi: 10.1063/1.1589587
[20] Balzarotti F, Eilers Y, Gwosch KC, Gynnå AH, Westphal V et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 2017; 355: 606–612. doi: 10.1126/science.aak9913
[21] Frauenfelder H, Chen G, Berendzen J, Fenimore PW, Jansson H et al. A unified model of protein dynamics. Proc Natl Acad Sci USA 2009; 106: 5129–5134. doi: 10.1073/pnas.0900336106
[22] Fakhri N, Wessel AD, Willms C, Pasquali M, Klopfenstein DR et al. High-resolution mapping of intracellular fluctuations using carbon nanotubes. Science 2014; 344: 1031–1035. doi: 10.1126/science.1250170
[23] Chu BB, Liao YC, Qi W, Xie C, Du XM et al. Cholesterol transport through lysosome-peroxisome membrane contacts. Cell 2015; 161: 291–306. doi: 10.1016/j.cell.2015.02.019
[24] Valm AM, Cohen S, Legant WR, Melunis J, Hershberg U et al. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 2017; 546: 162–167. doi: 10.1038/nature22369
[25] Schütz GJ, Schindler H, Schmidt T. Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys J 1997; 73: 1073–1080. doi: 10.1016/S0006-3495(97)78139-6
[26] Holtzer L, Meckel T, Schmidt T. Nanometric three-dimensional tracking of individual quantum dots in cells. Appl Phys Lett 2007; 90: 053902. doi: 10.1063/1.2437066
[27] Kuimova MK, Botchway SW, Parker AW, Balaz M, Collins HA et al. Imaging intracellular viscosity of a single cell during photoinduced cell death. Nat Chem 2009; 1: 69–73. doi: 10.1038/nchem.120
[28] Zhao JB, Jin DY, Schartner EP, Lu YQ, Liu YJ et al. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat Nanotechnol 2013; 8: 729–734. doi: 10.1038/nnano.2013.171
[29] Lu YQ, Zhao JB, Zhang R, Liu YJ, Liu DM et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nat Photon 2014; 8: 32–36. doi: 10.1038/nphoton.2013.322