[1] Murray, J. et al. The aqueous supramolecular chemistry of cucurbit[n]urils, pillar[n]arenes and deep-cavity cavitands. Chem. Soc. Rev. 46, 2479-2496 (2017). doi: 10.1039/C7CS00095B
[2] Liu, Z. C., Nalluri, S. K. M. & Stoddart, J. F. Surveying macrocyclic chemistry: from flexible crown ethers to rigid cyclophanes. Chem. Soc. Rev. 46, 2459-2478 (2017). doi: 10.1039/C7CS00185A
[3] Yu, G. C., Jie, K. C. & Huang, F. H. Supramolecular amphiphiles based on host-guest molecular recognition motifs. Chem. Rev. 115, 7240-7303 (2015). doi: 10.1021/cr5005315
[4] Barrow, S. J. et al. Cucurbituril-based molecular recognition. Chem. Rev. 115, 12320-12406 (2015). doi: 10.1021/acs.chemrev.5b00341
[5] Descalzo, A. B. et al. The supramolecular chemistry of organic-inorganic hybrid materials. Angew. Chem. Int. Ed. 45, 5924-5948 (2006). doi: 10.1002/anie.200600734
[6] Yang, H. et al. Supramolecular chemistry at interfaces: host-guest interactions for fabricating multifunctional biointerfaces. Acc. Chem. Res. 47, 2106-2115 (2014). doi: 10.1021/ar500105t
[7] Kim, H. J. et al. Host-guest sensing by calixarenes on the surfaces. Chem. Soc. Rev. 41, 1173-1190 (2012). doi: 10.1039/C1CS15169J
[8] Ma, X. & Zhao, Y. L. Biomedical applications of supramolecular systems based on host-guest interactions. Chem. Rev. 115, 7794-7839 (2015). doi: 10.1021/cr500392w
[9] Montes-García, V. et al. Metal nanoparticles and supramolecular macrocycles: a tale of synergy. Chem. Eur. J. 20, 10874-10883 (2014). doi: 10.1002/chem.201403107
[10] Pazos, E. et al. Cucurbit[8]uril (CB[8])-based supramolecular switches. Angew. Chem. Int. Ed. 58, 403-416 (2019). doi: 10.1002/anie.201806575
[11] Lou, X. Y. & Yang, Y. W. Pillar[n]arene-based supramolecular switches in solution and on surfaces. Adv. Mater. 32, 2003263 (2020). doi: 10.1002/adma.202003263
[12] Tan, L. L. et al. Cucurbiturils‐mediated noble metal nanoparticles for applications in sensing, sers, theranostics, and catalysis. Adv. Funct. Mater. 31, 2007277 (2020). doi: 10.1002/adfm.202007277
[13] Kasera, S. et al. Quantitative SERS using the sequestration of small molecules inside precise plasmonic nanoconstructs. Nano Lett. 12, 5924-5928 (2012). doi: 10.1021/nl303345z
[14] Montalti, M. et al. Solvent-induced modulation of collective photophysical processes in fluorescent silica nanoparticles. J. Am. Chem. Soc. 124, 13540-13546 (2002). doi: 10.1021/ja027270x
[15] Basabe-Desmonts, L. et al. A simple approach to sensor discovery and fabrication on self-assembled monolayers on glass. J. Am. Chem. Soc. 126, 7293-7299 (2004). doi: 10.1021/ja049901o
[16] Zheng, Y. J. et al. Development of fluorescent film sensors for the detection of divalent copper. J. Am. Chem. Soc. 125, 2680-2686 (2003). doi: 10.1021/ja0293610
[17] Labande, A., Ruiz, J. & Astruc, D. Supramolecular gold nanoparticles for the redox recognition of oxoanions: syntheses, titrations, stereoelectronic effects, and selectivity. J. Am. Chem. Soc. 124, 1782-1789 (2002). doi: 10.1021/ja017015x
[18] Astruc, D., Daniel, M. C. & Ruiz, J. Dendrimers and gold nanoparticles as exo-receptors sensing biologically important anions. Chem. Commun. 2367-2649 (2004).
[19] Liu, X. et al. Determination of monolayer-protected gold nanoparticle ligand-shell morphology using NMR. Nat. Commun. 3, 1182 (2012). doi: 10.1038/ncomms2155
[20] Smith, A. M. et al. Quantitative analysis of thiolated ligand exchange on gold nanoparticles monitored by 1H NMR spectroscopy. Anal. Chem. 87, 2771-2778 (2015). doi: 10.1021/ac504081k
[21] Anderson, N. C. & Owen, J. S. Soluble, chloride-terminated CdSe nanocrystals: ligand exchange monitored by 1H and 31P NMR spectroscopy. Chem. Mater. 25, 69-76 (2012). doi: 10.1021/cm303219a
[22] Langer, J. et al. Present and future of surface-enhanced Raman scattering. ACS Nano 14, 28-117 (2020). doi: 10.1021/acsnano.9b04224
[23] Novo, C., Funston, A. M. & Mulvaney, P. Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat. Nanotechnol. 3, 598-602 (2008). doi: 10.1038/nnano.2008.246
[24] De Nijs, B. et al. Inhibiting analyte theft in surface-enhanced raman spectroscopy substrates: subnanomolar quantitative drug detection. ACS Sens. 4, 2988-2996 (2019). doi: 10.1021/acssensors.9b01484
[25] Sigle, D. O. et al. Observing single molecules complexing with cucurbit[7]uril through nanogap surface-enhanced raman spectroscopy. J. Phys. Chem. Lett. 7, 704-710 (2016). doi: 10.1021/acs.jpclett.5b02535
[26] Leyton, P. et al. Surface-enhanced micro-raman detection and characterization of calix[4]arene—polycyclic aromatic hydrocarbon host—guest complexes. Appl. Spectrosc. 59, 1009-1015 (2005). doi: 10.1366/0003702054615160
[27] Leyton, P. et al. Selective molecular recognition of polycyclic aromatic hydrocarbons (PAHs) on calix[4]arene-functionalized Ag nanoparticles by surface-enhanced Raman scattering. J. Phys. Chem. B 108, 17484-17490 (2004). doi: 10.1021/jp047949i
[28] Ong, W., Gómez-Kaifer, M. & Kaifer, A. E. Cucurbit[7]uril: a very effective host for viologens and their cation radicals. Org. Lett. 4, 1791-1794 (2002). doi: 10.1021/ol025869w
[29] Moon, K. & Kaifer, A. E. Modes of binding interaction between viologen guests and the cucurbit[7]uril host. Org. Lett. 6, 185-188 (2004). doi: 10.1021/ol035967x
[30] Lee, T. C. & Scherman, O. A. Formation of dynamic aggregates in water by cucurbit[5]uril capped with gold nanoparticles. Chem. Commun. 46, 2438-2440 (2010). doi: 10.1039/b925051d
[31] Taylor, R. W. et al. Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril "glue". ACS Nano 5, 3878-3887 (2011). doi: 10.1021/nn200250v
[32] Castellà-Ventura, M. & Kassab, E. Vibrational analysis of some transient species implicated in the photoreduction of 4, 4'-bipyridine based on ab initio and density functional calculations. J. Raman Spectrosc. 29, 511-536 (1998). doi: 10.1002/(SICI)1097-4555(199806)29:6<511::AID-JRS271>3.0.CO;2-J
[33] Mahajan, S. et al. Raman and SERS spectroscopy of cucurbit[n]urils. Phys. Chem. Chem. Phys. 12, 10429-10433 (2010). doi: 10.1039/c0cp00071j
[34] Joo, S. W. Surface-enhanced Raman scattering of 4, 4′-bipyridine on gold nanoparticle surfaces. Vib. Spectrosc. 34, 269-272 (2004). doi: 10.1016/j.vibspec.2003.12.006
[35] Pérez-Jiménez, A. I. et al. Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments. Chem. Sci. 11, 4563-4577 (2020). doi: 10.1039/D0SC00809E
[36] Roldán, M. L. et al. Cucurbit[8]uril-stabilized charge transfer complexes with diquat driven by pH: a SERS study. Phys. Chem. Chem. Phys. 14, 4935-4941 (2012). doi: 10.1039/c2cp23503j
[37] Gao, P. & Weaver, M. J. Metal-adsorbate vibrational frequencies as a probe of surface bonding: halides and pseudohalides at gold electrodes. J. Phys. Chem. 90, 4057-4063 (1986). doi: 10.1021/j100408a045
[38] Ignaczak, A. & Gomes, J. A. N. F. Quantum calculations on the adsorption of halide ions on the noble metals. J. Electroanal. Chem. 420, 71-78 (1997). doi: 10.1016/S0022-0728(96)04815-2
[39] Lopez-Ramirez, M. R. et al. Vibrational analysis of herbicide diquat: a normal Raman and SERS study on Ag nanoparticles. Vib. Spectrosc. 48, 58-64 (2008). doi: 10.1016/j.vibspec.2007.12.003
[40] Leopold, N. et al. The role of adatoms in chloride-activated colloidal silver nanoparticles for surface-enhanced Raman scattering enhancement. Beilstein J. Nanotechnol. 9, 2236-2247 (2018). doi: 10.3762/bjnano.9.208
[41] Khan, M. S. A. et al. Remarkable salt effect on stability of supramolecular complex between modified cucurbit[6]uril and methylviologen in aqueous media. J. Phys. Chem. B 113, 11054-11057 (2009). doi: 10.1021/jp9059906
[42] Danylyuk, O., Fedin, V. P. & Sashuk, V. Kinetic trapping of the host-guest association intermediate and its transformation into a thermodynamic inclusion complex. Chem. Commun. 49, 1859-1861 (2013). doi: 10.1039/c3cc37868c
[43] Vincil, G. A. & Urbach, A. R. Effects of the number and placement of positive charges on viologen-cucurbit[n]uril interactions. Supramol. Chem. 20, 681-687 (2008). doi: 10.1080/10610270701689572
[44] Bell, S. E. & Sirimuthu, N. M. S. Surface-enhanced Raman spectroscopy as a probe of competitive binding by anions to citrate-reduced silver colloids. J. Phys. Chem. A 109, 7405-7410 (2005). doi: 10.1021/jp052184f
[45] Bhowmik, P. K. et al. Synthesis and characterization of ionic liquids: viologen bis{tetrakis[3, 5‐bis(trifluoromethyl)phenyl]borate} salts. Liq. Cryst. 33, 891-906 (2006). doi: 10.1080/02678290600871598
[46] Lee, P. C. & Meisel, D. Adsorption and surface-enhanced raman of dyes on silver and gold sols. J. Phys. Chem. 86, 3391-3395 (1982). doi: 10.1021/j100214a025