[1] Baisden, P. A. et al. Large optics for the national ignition facility. Fusion Science and Technology 69, 295-351 (2016). doi: 10.13182/FST15-143
[2] Spaeth, M. L. et al. Optics recycle loop strategy for NIF operations above UV laser-induced damage threshold. Fusion Science and Technology 69, 265-294 (2016). doi: 10.13182/FST15-119
[3] Wong, J. et al. Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses. Journal of Non-Crystalline Solids 352, 255-272 (2006). doi: 10.1016/j.jnoncrysol.2005.11.036
[4] Suratwala, T. I. et al. HF-based etching processes for improving laser damage resistance of fused silica optical surfaces. Journal of the American Ceramic Society 94, 416-428 (2011).
[5] Laurence, T. A. et al. Metallic-like photoluminescence and absorption in fused silica surface flaws. Applied Physics Letters 94, 151114 (2009). doi: 10.1063/1.3119622
[6] Kakinuma, Y. et al. Ultra-precision grinding of optical glass lenses with La-doped CeO2 slurry. CIRP Annals 68, 345-348 (2019). doi: 10.1016/j.cirp.2019.04.089
[7] Zhong, Y. Y. et al. Experimental study on surface integrity and subsurface damage of fused silica in ultra-precision grinding. The International Journal of Advanced Manufacturing Technology 115, 4021-4033 (2021). doi: 10.1007/s00170-021-07439-y
[8] Stephenson, D. J., Sun, X. & Zervos, C. A study on ELID ultra precision grinding of optical glass with acoustic emission. International Journal of Machine Tools and Manufacture 46, 1053-1063 (2006). doi: 10.1016/j.ijmachtools.2005.08.013
[9] Wang, J. et al. Evaluating subsurface damage in optical glasses. Journal of the European Optical Society – Rapid Publications 6, 11001 (2011).
[10] Zhang, Z. Y., Yan, J. W. & Kuriyagawa, T. Manufacturing technologies toward extreme precision. International Journal of Extreme Manufacturing 1, 022001 (2019). doi: 10.1088/2631-7990/ab1ff1
[11] Stevens-Kalceff, M. A. & Wong, J. Distribution of defects induced in fused silica by ultraviolet laser pulses before and after treatment with a CO2 laser. Journal of Applied Physics 97, 113519 (2005). doi: 10.1063/1.1922591
[12] Li, B. et al. Layer by layer exposure of subsurface defects and laser-induced damage mechanism of fused silica. Applied Surface Science 508, 145186 (2020). doi: 10.1016/j.apsusc.2019.145186
[13] Sun, L. X. et al. Effects of combined process of reactive ion etching and dynamic chemical etching on UV laser damage resistance and surface quality of fused silica optics. Optics Express 26, 18006-18018 (2018). doi: 10.1364/OE.26.018006
[14] Malinauskas, M. et al. Ultrafast laser processing of materials: from science to industry. Light:Science & Applications 5, e16133 (2016).
[15] Sugioka, K. & Cheng, Y. Ultrafast lasers—reliable tools for advanced materials processing. Light:Science & Applications 3, e149 (2014).
[16] Salter, P. S. & Booth, M. J. Adaptive optics in laser processing. Light:Science & Applications 8, 110 (2019).
[17] Li, Z. Z. et al. O-FIB: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment. Light: Science & Applications 9, 41 (2020).
[18] Kotz, F. et al. Fabrication of arbitrary three-dimensional suspended hollow microstructures in transparent fused silica glass. Nature Communications 10, 1439 (2019). doi: 10.1038/s41467-019-09497-z
[19] Herman, P. R. et al. Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers. Applied Surface Science 154–155, 577-586 (2000).
[20] Liu, H. G., Lin, W. X. & Hong, M. H. Hybrid laser precision engineering of transparent hard materials: challenges, solutions and applications. Light:Science & Applications 10, 162 (2021).
[21] Schwarz, S. et al. Rapid fabrication of precise glass axicon arrays by an all laser-based manufacturing technology. Journal of Laser Applications 32, 012001 (2020). doi: 10.2351/1.5134988
[22] Temmler, A., Braun, K., & Uluz, E. Heat accumulation and surface roughness evolution in CO2 nanosecond laser ablation of quartz glass. Optics & Laser Technology 144, 107426 (2021).
[23] Weingarten, C. et al. Laser polishing and laser shape correction of optical glass. Journal of Laser Applications 29, 011702 (2017). doi: 10.2351/1.4974905
[24] Cao, Z. et al. Ground fused silica processed by combined chemical etching and CO2 laser polishing with super-smooth surface and high damage resistance. Optics Letters 45, 6014-6017 (2020). doi: 10.1364/OL.409857
[25] Meyer, B. J. et al. Sensitive ablation of brittle materials with pulsed CO2 laser radiation. Journal of Laser Applications 28, 012002 (2016). doi: 10.2351/1.4932619
[26] Tan, C. et al. Physical mechanism of pulsed laser interaction with fused silica optics during CO2 laser mitigation process. Journal of Non-Crystalline Solids 558, 120662 (2021). doi: 10.1016/j.jnoncrysol.2021.120662
[27] Zhao, J. et al. Structural modification of silica glass by laser scanning. Journal of Applied Physics 95, 5475-5482 (2004). doi: 10.1063/1.1703832
[28] Doualle, T. et al. Thermo-mechanical simulations of CO2 laser–fused silica interactions. Journal of Applied Physics 119, 113106 (2016). doi: 10.1063/1.4944435
[29] Zhang, L. J. et al. Investigations on variation of defects in fused silica with different annealing atmospheres using positron annihilation spectroscopy. Optical Materials 72, 540-544 (2017). doi: 10.1016/j.optmat.2017.06.047
[30] Zhou, J. N. & Li, B. C. Origins of a damage-induced green photoluminescence band in fused silica revealed by time-resolved photoluminescence spectroscopy. Optical Materials Express 7, 2888-2898 (2017). doi: 10.1364/OME.7.002888
[31] Sugiura, H. & Yamadaya, T. Raman-scattering in silica glass in the permanent densification region. Journal of Non-Crystalline Solids 144, 151-158 (1992). doi: 10.1016/S0022-3093(05)80395-3
[32] Hosono, H. et al. Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO2. Physical Review Letters 87, 175501 (2001). doi: 10.1103/PhysRevLett.87.175501