[1] Keshavamurthy, S. & Schlagheck, P. Dynamical Tunneling: Theory and Experiment. (Boca Raton: CRC Press, 2011).
[2] Davis, M. J. & Heller, E. J. Quantum dynamical tunneling in bound states. J. Chem. Phys. 75, 246-254 (1981). doi: 10.1063/1.441832
[3] Cao, H. & Wiersig, J. Dielectric microcavities: model systems for wave chaos and non-hermitian physics. Rev. Mod. Phys. 87, 61-111 (2015). doi: 10.1103/RevModPhys.87.61
[4] Bohigas, O., Tomosovic, S. & Ullmo, D. Manifestations of classical phase space structures in quantum mechanics. Phys. Rep. 223, 43-133 (1993). doi: 10.1016/0370-1573(93)90109-Q
[5] Chaudhury, S. et al. Quantum signatures of chaos in a kicked top. Nature 461, 768-771 (2009). doi: 10.1038/nature08396
[6] Steck, D. A., Oskay, W. H. & Raizen, M. G. Observation of chaos-assisted tunneling between islands of stability. Science 293, 274-278 (2001). doi: 10.1126/science.1061569
[7] Nöckel, J. U. & Stone, A. D. Ray and wave chaos in asymmetric resonant optical cavities. Nature 385, 45-47 (1997). doi: 10.1038/385045a0
[8] Gmachl, C. et al. High-power directional emission from microlasers with chaotic resonators. Science 280, 1556-1564 (1998). doi: 10.1126/science.280.5369.1556
[9] Dembowski, C. et al. First experimental evidence for chaos-assisted tunneling in a microwave annular billiard. Phys. Rev. Lett. 84, 867-870 (2000). doi: 10.1103/PhysRevLett.84.867
[10] Podolskiy, V. A. & Narimanov, E. E. Semiclassical description of chaos-assisted tunneling. Phys. Rev. Lett. 91, 263601 (2003). doi: 10.1103/PhysRevLett.91.263601
[11] Podolskiy, V. A. & Narimanov, E. E. Chaos-assisted tunneling in dielectric microcavities. Opt. Lett. 30, 474-476 (2005). doi: 10.1364/OL.30.000474
[12] Shinohara, S. et al. Chaos-assisted directional light emission from microcavity lasers. Phys. Rev. Lett. 104, 163902 (2010). doi: 10.1103/PhysRevLett.104.163902
[13] Kwak, H. et al. Nonlinear resonance-assisted tunneling induced by microcavity deformation. Sci. Rep. 5, 9010 (2015). doi: 10.1038/srep09010
[14] Gehler, S. et al. Experimental observation of resonance-assisted tunneling. Phys. Rev. Lett. 115, 104101 (2015). doi: 10.1103/PhysRevLett.115.104101
[15] Liu, S. et al. Transporting the optical chirality through the dynamical barriers in optical microcavities. Laser Photonics Rev. 12, 1800027 (2018). doi: 10.1002/lpor.201800027
[16] Jiang, X. F. et al. Chaos-assisted broadband momentum transformation in optical microresonators. Science 358, 344-347 (2017). doi: 10.1126/science.aao0763
[17] Löck, S. et al. Regular-to-chaotic tunneling rates: from the quantum to the semiclassical regime. Phys. Rev. Lett. 104, 114101 (2010). doi: 10.1103/PhysRevLett.104.114101
[18] Song, Q. H. et al. Channeling chaotic rays into waveguides for efficient collection of microcavity emission. Phys. Rev. Lett. 108, 243902 (2012). doi: 10.1103/PhysRevLett.108.243902
[19] Kim, M. W. et al. Chaos-assisted tunneling in a deformed microcavity laser. Opt. Express 21, 32508-32515 (2013). doi: 10.1364/OE.21.032508
[20] Preu, S. et al. Directional emission of dielectric disks with a finite scatterer in the THz regime. Opt. Express 21, 16370-16380 (2013). doi: 10.1364/OE.21.016370
[21] Li, J. et al. Sideband spectroscopy and dispersion measurement in microcavities. Opt. Express 20, 26337-26344 (2012). doi: 10.1364/OE.20.026337
[22] Lu, X. Y. et al. Universal frequency engineering tool for microcavity nonlinear optics: multiple selective mode splitting of whispering-gallery resonances. Photonics Res. 8, 1676-1686 (2020). doi: 10.1364/PRJ.401755
[23] Yi, C. H., Kullig, J. & Wiersig, J. Pair of exceptional points in a microdisk cavity under an extremely weak deformation. Phys. Rev. Lett. 120, 093902 (2018). doi: 10.1103/PhysRevLett.120.093902
[24] Shim, J. B. et al. Uncertainty-limited turnstile transport in deformed microcavities. Phys. Rev. Lett. 100, 174102 (2008). doi: 10.1103/PhysRevLett.100.174102
[25] Ge, L. Quantum chaos in optical microcavities: a broadband application. EPL 123, 64001 (2018). doi: 10.1209/0295-5075/123/64001
[26] Chen, L. K. et al. Regular-orbit-engineered chaotic photon transport in mixed-phase space. Phys. Rev. Lett. 123, 173903 (2019). doi: 10.1103/PhysRevLett.123.173903
[27] Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464-467 (2016). doi: 10.1126/science.aaf8533
[28] Cognée, K. G. et al. Cooperative interactions between nano-antennas in a high-Q cavity for unidirectional light sources. Light. Sci. Appl. 8, 115 (2019). doi: 10.1038/s41377-019-0227-x
[29] Cao, Q. T., Chen, Y. L. & Xiao, Y. F. Chiral emission and Purcell enhancement in a hybrid plasmonic-photonic microresonator. Light. : Sci. Appl. 9, 4 (2020). doi: 10.1038/s41377-019-0241-z
[30] Chen, W. J. et al. Exceptional points enhance sensing in an optical microcavity. Nature 548, 192-196 (2017). doi: 10.1038/nature23281
[31] Jiang, X. F. & Yang, L. Optothermal dynamics in whispering-gallery microresonators. Light. Sci. Appl. 9, 24 (2020). doi: 10.1038/s41377-019-0239-6
[32] Huang, C. et al. Ultrafast control of vortex microlasers. Science 367, 1018-1021 (2020). doi: 10.1126/science.aba4597
[33] Breunig, I. et al. Whispering gallery modes at the rim of an axisymmetric optical resonator: analytical versus numerical description and comparison with experiment. Opt. Express 21, 30683-30692 (2013). doi: 10.1364/OE.21.030683
[34] Schunk, G. et al. Identifying modes of large whispering-gallery mode resonators from the spectrum and emission pattern. Opt. Express 22, 30795-30806 (2014). doi: 10.1364/OE.22.030795
[35] Gmachl, C. et al. Kolmogorov-Arnold-Moser transition and laser action on scar modes in semiconductor diode lasers with deformed resonators. Opt. Lett. 27, 824-826 (2002). doi: 10.1364/OL.27.000824
[36] Fan, L. R. et al. Real-time observation and control of optical chaos. Sci. Adv. 7, eabc8448 (2021). doi: 10.1126/sciadv.abc8448
[37] Schwefel, H. G. L. et al. Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers. J. Optical Soc. Am. B 21, 923-934 (2004). doi: 10.1364/JOSAB.21.000923
[38] Wiersig, J. & Hentschel, M. Combining directional light output and ultralow loss in deformed microdisks. Phys. Rev. Lett. 100, 033901 (2008). doi: 10.1103/PhysRevLett.100.033901
[39] Sridhar, S., Hogenboom, D. O. & Willemsen, B. A. Microwave experiments on chaotic billiards. J. Stat. Phys. 68, 239-258 (1992). doi: 10.1007/BF01048844
[40] Gokirmak, A. et al. Scanned perturbation technique for imaging electromagnetic standing wave patterns of microwave cavities. Rev. Sci. Instrum. 69, 3410-3417 (1998). doi: 10.1063/1.1149108
[41] Almeida, V. R. et al. All-optical control of light on a silicon chip. Nature 431, 1081-1084 (2004). doi: 10.1038/nature02921
[42] Gensty, T. et al. Wave chaos in real-world vertical-cavity surface-emitting lasers. Phys. Rev. Lett. 94, 233901 (2005). doi: 10.1103/PhysRevLett.94.233901
[43] Aldaya, I. et al. Nonlinear carrier dynamics in silicon nano-waveguides. Optica 4, 1219-1227 (2017). doi: 10.1364/OPTICA.4.001219
[44] Ge, L. et al. Extreme output sensitivity to subwavelength boundary deformation in microcavities. Phys. Rev. A 87, 023833 (2013). doi: 10.1103/PhysRevA.87.023833
[45] Ge, L. & Feng, L. Optical-reciprocity-induced symmetry in photonic heterostructures and its manifestation in scattering PT-symmetry breaking. Phys. Rev. A 94, 043836 (2016). doi: 10.1103/PhysRevA.94.043836
[46] Haus, H. A. Waves and Fields in Optoelectronics. (Englewood: Prentice-Hall, 1984).
[47] Landau, L. D. & Lifshitz, E. M. Electrodynamics of Continuous Media. (Oxford: Pergamon Press, 1960).
[48] Qian, Y. J. et al. Observation of a manifold in the chaotic phase space of an asymmetric optical microcavity. Photonics Res. 9, 364-369 (2021). doi: 10.1364/PRJ.414785
[49] Hoover, W. G. Time Reversibility, Computer Simulation, and Chaos. (Singapore: World Scientific, 1999).
[50] Altmann, E. G., Portela, J. S. E. & Tél, T. Leaking chaotic systems. Rev. Mod. Phys. 85, 869-918 (2013). doi: 10.1103/RevModPhys.85.869
[51] Zhang, Z. F. et al. Tunable topological charge vortex microlaser. Science 368, 760-763 (2020). doi: 10.1126/science.aba8996
[52] Zhang, Z. F. et al. Elimination of spatial hole burning in microlasers for stability and efficiency enhancement. ACS Photonics 5, 3016-3022 (2018). doi: 10.1021/acsphotonics.8b00800
[53] Wang, B. C. et al. Towards high-power, high-coherence, integrated photonic mmWave platform with microcavity solitons. Light Sci. Appl. 10, 4 (2021). doi: 10.1038/s41377-020-00445-x
[54] Chen, H. J. et al. Chaos-assisted two-octave-spanning microcombs. Nat. Commun. 11, 2336 (2020). doi: 10.1038/s41467-020-15914-5