[1] Voïtchovsky, K., Giofrè, D., Segura, J. J., Stellacci, F. & Ceriotti, M. Thermally-nucleated self-assembly of water and alcohol into stable structures at hydrophobic interfaces. Nat. Commun. 7, 13064 (2016). doi: 10.1038/ncomms13064
[2] Liu, K. C. et al. A flexible and superhydrophobic upconversion- luminescence membrane as an ultrasensitive fluorescence sensor for single droplet detection. Light Sci. Appl. 5, e16136 (2016). doi: 10.1038/lsa.2016.136
[3] Lee, H., Alcaraz, M. L., Rubner, M. F. & Cohen, R. E. Zwitter- wettability and antifogging coatings with frost- resisting capabilities. ACS Nano 7, 2172-2185 (2013). doi: 10.1021/nn3057966
[4] Jauregui, C., Limpert, J. & Tünnermann, A. High-power fibre lasers. Nat. Photonics 7, 861-867 (2013). doi: 10.1038/nphoton.2013.273
[5] Fan, Z. W. et al. High beam quality 5 J, 200 Hz Nd:YAG laser system. Light Sci. Appl. 6, e17004 (2017). doi: 10.1038/lsa.2017.4
[6] Tauer, J., Kofler, H. & Wintner, E. Laser-initiated ignition. Laser Photonics Rev. 4, 99-122 (2010). doi: 10.1002/lpor.200810070
[7] Weber, R., Neuenschwander, B., Mac Donald, M., Roos, M. B. & Weber, H. P. Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods. IEEE J. Quantum Electron 34, 1046-1053 (1998). doi: 10.1109/3.678602
[8] Waldburger, D. et al. High-power 100 fs semiconductor disk lasers. Optica 3, 844-852 (2016). doi: 10.1364/OPTICA.3.000844
[9] Tokita, S., Murakami, M., Shimizu, S., Hashida, M. & Sakabe, S. Liquid-cooled 24 W mid-infrared Er:ZBLAN fiber laser. Opt. Lett. 34, 3062-3064 (2009). doi: 10.1364/OL.34.003062
[10] Murahara, M., Sato, N. & Ikadai, A. Hard protective waterproof coating for high-power laser optical elements. Opt. Lett. 30, 3416-3418 (2005). doi: 10.1364/OL.30.003416
[11] Jung, B. H., Lee, D. K., Sohn, S. H. & Kim, H. S. Thermal, dielectric, and optical properties of neodymium borosilicate glasses for thick films. J. Am. Ceram. Soc. 86, 1202-1204 (2003). doi: 10.1111/j.1151-2916.2003.tb03448.x
[12] Šuminas, R., Tamošauskas, G., Valiulis, G. & Dubietis, A. Spatiotemporal light bullets and supercontinuum generation in β-BBO crystal with competing quadratic and cubic nonlinearities. Opt. Lett. 41, 2097-2100 (2016). doi: 10.1364/OL.41.002097
[13] Vinnichenko, M. et al. Highly dense amorphous Nb2O5 films with closed nanosized pores. Appl. Phys. Lett. 95, 081904 (2009). doi: 10.1063/1.3212731
[14] Tolenis, T. et al. Next generation highly resistant mirrors featuring all-silica layers. Sci. Rep. 7, 10898 (2017). doi: 10.1038/s41598-017-11275-0
[15] Lupoi, R. et al. Hardfacing steel with nanostructured coatings of Stellite-6 by supersonic laser deposition. Light Sci. Appl. 1, e10 (2012). doi: 10.1038/lsa.2012.10
[16] Wang, A. Q. et al. HfO2/SiO2 multilayer enhanced aluminum alloy-based dual-wavelength high reflective optics. Thin. Solid. Films. 592, 232-236 (2015). doi: 10.1016/j.tsf.2015.04.032
[17] Cheng, X. B. et al. The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses. Light Sci. Appl. 2, e80 (2013). doi: 10.1038/lsa.2013.36
[18] Stenzel, O. A model for calculating the effect of nanosized pores on refractive index, thermal shift and mechanical stress in optical coatings. J. Phys. D Appl. Phys. 42, 055312 (2009). doi: 10.1088/0022-3727/42/5/055312
[19] Stolz, C. J. et al. Substrate and coating defect planarization strategies for high-laser-fluence multilayer mirrors. Thin. Solid. Films. 592, 216-220 (2015). doi: 10.1016/j.tsf.2015.04.047
[20] Cheng, X. B. et al. Contribution of angle-dependent light penetration to electric-field enhancement at nodules in optical coatings. Opt. Lett. 42, 2086-2089 (2017). doi: 10.1364/OL.42.002086
[21] Jensen, L., Mende, M., Schrameyer, S., Jupé, M. & Ristau, D. Role of two-photon absorption in Ta2O5 thin films in nanosecond laser-induced damage. Opt. Lett. 37, 4329-4331 (2012). doi: 10.1364/OL.37.004329
[22] Cody, G. D., Tiedje, T., Abeles, B., Brooks, B. & Goldstein, Y. Disorder and the optical-absorption edge of hydrogenated amorphous silicon. Phys. Rev. Lett. 47, 1480-1483 (1981). doi: 10.1103/PhysRevLett.47.1480
[23] Cheng, X. B. et al. Optimal coating solution for a compact resonating cavity working at Brewster angle. Opt. Express 24, 24313-24320 (2016). doi: 10.1364/OE.24.024313
[24] Borden, M. R., et al. Improved method for laser damage testing coated optics. In Proceedings of SPIE 5991, Laser-Induced Damage in Optical Materials. p59912A (SPIE, Boulder, 2006).
[25] Wang, Z. S. et al. Interfacial damage in a Ta2O5/SiO2 double cavity filter irradiated by 1064 nm nanosecond laser pulses. Opt. Express 21, 30623-30632 (2013). doi: 10.1364/OE.21.030623
[26] Liu, F. et al. Interface and material engineering for zigzag slab lasers. Sci. Rep. 7, 16699 (2017). doi: 10.1038/s41598-017-16968-0
[27] Kaiser, N. Review of the fundamentals of thin-film growth. Appl. Opt. 41, 3053-3060 (2002). doi: 10.1364/AO.41.003053
[28] Cheng, X. B., Fan, B., Haruo, T. & Wang Z. S. Optical and structural properties of NbxSiyO composite films prepared by metallic co-sputtering process. In Proceedings Volume 7101, Advances in Optical Thin Films III. p71011G (SPIE, Glasgow, 2008).