[1] |
Pirandola, S. et al. Advances in quantum cryptography. Advances in Optics and Photonics 12, 1012-1236 (2020). doi: 10.1364/AOP.361502 |
[2] |
Zhang, Z. S. et al. Entanglement-based quantum information technology: a tutorial. Advances in Optics and Photonics 16, 60-162 (2024). doi: 10.1364/AOP.497143 |
[3] |
Bedington, R., Arrazola, J. M. & Ling, A. Progress in satellite quantum key distribution. npj Quantum Information 3, 30 (2017). doi: 10.1038/s41534-017-0031-5 |
[4] |
Chen, Y. A. et al. An integrated space-to-ground quantum communication network over 4, 600 kilometres. Nature 589, 214-219 (2021). doi: 10.1038/s41586-020-03093-8 |
[5] |
Gottesman, D. & Chuang, I. Quantum digital signatures. Print at https://doi.org/10.48550/arXiv.quant-ph/0105032 (2001). |
[6] |
Du, Y. Q. et al. Chip-integrated quantum signature network over 200 km. Light: Science & Applications 14, 108 (2025). |
[7] |
Wang, J. W. et al. Integrated photonic quantum technologies. Nature Photonics 14, 273-284 (2020). doi: 10.1038/s41566-019-0532-1 |
[8] |
Luo, W. et al. Recent progress in quantum photonic chips for quantum communication and internet. Light: Science & Applications 12, 175 (2023). |
[9] |
You, C. L. et al. Multiparticle quantum plasmonics. Nanophotonics 9, 1243-1269 (2020). doi: 10.1515/nanoph-2019-0517 |
[10] |
Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75-81 (2022). doi: 10.1038/s41586-022-04725-x |
[11] |
Yu, S. et al. A von-Neumann-like photonic processor and its application in studying quantum signature of chaos. Light: Science & Applications 13, 74 (2024). |