| [1] | Scherer, J. J., et al. Mid-IR difference frequency laser-based sensors for ambient CH4, CO, and N2O monitoring. Applied Physics B 110, 271-277 (2013). doi: 10.1007/s00340-012-5244-x |
| [2] | Gubin, M. A., et al. Femtosecond fiber laser based methane optical clock. Applied Physics B 95, 661-666 (2009). |
| [3] | Zlatanovic, S., et al. Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source. Nature Photonics 4, 561-564 (2010). doi: 10.1038/nphoton.2010.117 |
| [4] | Baker, M. J., et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nature Protocols 9, 1771-1791 (2014). doi: 10.1038/nprot.2014.110 |
| [5] | Seddon, A. B. Mid-infrared (IR)−A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo. Physica Status Solidi (B) 250, 1020-1027 (2013). doi: 10.1002/pssb.201248524 |
| [6] | Jackson, S. Mid-Infrared Fiber Photonics: Glass Materials, Fiber Fabrication and Processing, Laser and Nonlinear Sources (2021). |
| [7] | Tao, G. M., et al. Infrared fibers. Advances in Optics and Photonics 7, 379-458 (2015). doi: 10.1364/AOP.7.000379 |
| [8] | Shelby, J. E. Introduction to glass science and technology. 3rd edn. (London: Royal society of chemistry, 2020). |
| [9] | Wang, B. S. & Mies, E. Review of fabrication techniques for fused fiber components for fiber lasers. Proceedings of SPIE 7195, Fiber Lasers VI: Technology, Systems, and Applications. San Jose, CA, USA: SPIE, 2009, 71950A. |
| [10] | Duval, S., et al. Femtosecond fiber lasers reach the mid-infrared. Optica 2, 623-626 (2015). doi: 10.1364/OPTICA.2.000623 |
| [11] | Bawden, N., et al. Ultrafast 3.5 μm fiber laser. Optics Letters 46, 1636-1639 (2021). doi: 10.1364/OL.418162 |
| [12] | Majewski, M. R., Woodward, R. I. & Jackson, S. D. Dysprosium-doped zblan fiber laser tunable from 2.8 μm to 3.4 μm, pumped at 1.7 μm. Optics Letters 43, 971-974 (2018). doi: 10.1364/OL.43.000971 |
| [13] | Maes, F., et al. Room-temperature fiber laser at 3.92 μm. Optica 5, 761-764 (2018). doi: 10.1364/OPTICA.5.000761 |
| [14] | Jackson, S. D. Towards high-power mid-infrared emission from a fibre laser. Nature Photonics 6, 423-431 (2012). doi: 10.1038/nphoton.2012.149 |
| [15] | Fortin, V., et al. Watt-level erbium-doped all-fiber laser at 3.44 μm. Optics letters 41, 559-562 (2016). doi: 10.1364/OL.41.000559 |
| [16] | Xia, Y. T., et al. Fabrication of a tellurite-fiber-based side-pump coupler based on the tapered-fused method. Optics Express 31, 13169-13181 (2023). doi: 10.1364/OE.487118 |
| [17] | Séguin, A., et al. Fabrication and characterization of indium fluoride multimode fused fiber couplers for the mid-infrared. Optics Express 31, 33670-33678 (2023). doi: 10.1364/OE.501849 |
| [18] | Fernandez, T. T., et al. Ultrafast laser inscribed waveguides in tailored fluoride glasses: An enabling technology for mid-infrared integrated photonics devices. Scientific Reports 12, 14674 (2022). doi: 10.1038/s41598-022-18701-y |
| [19] | Dimmick, T. E., et al. Carbon dioxide laser fabrication of fused-fiber couplers and tapers. Applied Optics 38, 6845-6848 (1999). doi: 10.1364/AO.38.006845 |
| [20] | Kosterin, A., et al. Tapered fiber bundles for combining high-power diode lasers. Applied optics 43, 3893-3900 (2004). doi: 10.1364/AO.43.003893 |
| [21] | Huang, C. W., et al. Direct side pumping of double-clad fiber laser by laser diode array through the use of subwavelength grating coupler. IEEE Photonics Journal 4, 411-421 (2012). doi: 10.1109/JPHOT.2012.2186561 |
| [22] | Koplow, J. P., Moore, S. W. & Kliner, D. A. V. A new method for side pumping of double-clad fiber sources. IEEE Journal of Quantum Electronics 39, 529-540 (2003). doi: 10.1109/JQE.2003.809336 |
| [23] | Xu, J. Q., et al. A non-fused fiber coupler for side-pumping of double-clad fiber lasers. Optics Communications 220, 389-395 (2003). doi: 10.1016/S0030-4018(03)01404-4 |
| [24] | Aydin, Y. O., et al. Endcapping of high-power 3 μm fiber lasers. Optics express 27, 20659-20669 (2019). doi: 10.1364/OE.27.020659 |
| [25] | Schäfer, C. A., et al. Fluoride-fiber-based side-pump coupler for high-power fiber lasers at 2.8 μm. Optics Letters 43, 2340-2343 (2018). doi: 10.1364/OL.43.002340 |
| [26] | Annunziato, A., et al. Fused optical fiber combiner based on indium fluoride glass: perspectives for mid-ir applications. Optics Express 30, 44160-44174 (2022). doi: 10.1364/OE.471090 |
| [27] | Uehara, H., et al. Power scalable 30-w mid-infrared fluoride fiber amplifier. Optics Letters 44, 4777-4780 (2019). doi: 10.1364/OL.44.004777 |
| [28] | Magnan-Saucier, S., et al. Fuseless side-pump combiner for efficient fluoride-based double-clad fiber pumping. Optics Letters 45, 5828-5831 (2020). doi: 10.1364/OL.409174 |
| [29] | Karampour, N., Zewedi, G. T. & Rochette, M. All-fiber erbium-doped zblan ring cavity laser. 2023 IEEE Photonics Conference (IPC). Orlando, FL, USA: IEEE, 2023, 1–2. |
| [30] | Xiao, Y., et al. Numerical modeling of multi-point side-pumped mid-infrared erbium-doped fluoride fiber lasers. Optics Express 31, 24110-24126 (2023). doi: 10.1364/OE.493570 |
| [31] | Zhu, X. S. & Peyghambarian, N. High-power ZBLAN glass fiber lasers: Review and Prospect. Advances in OptoElectronics 2010, 501956 (2010). |
| [32] | Gan, H. T., et al. High content Er3+ doped ZBLAN glass: The spectral characteristics and high slope efficiency MIR laser investigation. Journal of Alloys and Compounds 865, 158170 (2021). doi: 10.1016/j.jallcom.2020.158170 |
| [33] | Pollnau, M. & Jackson, S. D. Energy recycling versus lifetime quenching in erbium-doped 3 μm fiber lasers. IEEE Journal of Quantum Electronics 38, 162-169 (2002). doi: 10.1109/3.980268 |
| [34] | Jackson, S. Spectroscopy of the rare-earth-ion transitions in fluoride glasses (2022). |
| [35] | Boilard, T., Vallée, R. & Bernier, M. Probing the dispersive properties of optical fibers with an array of femtosecond-written fiber bragg gratings. Scientific Reports 12, 4350 (2022). doi: 10.1038/s41598-022-08329-3 |
| [36] | Chiamenti, I., et al. First-order fiber bragg grating inscription in indium fluoride fiber using a uv/vis femtosecond laser and two-beam interferometry. Optics Letters 46, 1816-1819 (2021). doi: 10.1364/OL.420264 |
| [37] | Perminov, B. et al. Side-polished Silica-Fluoride Multimode Fibre Pump Combiner for Mid-IR Fibre Lasers and Amplifiers. Dataset. https://doi.org/10.6084/m9.figshare.25773579.v1. |