| [1] | Wohlers, T. T. & Caffrey, T. 3D Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report. (Wohlers Associates, 2014). |
| [2] | Crump, S. S. Fused deposition modeling (FDM): putting rapid back into prototyping. Proceedings of the Second International Conference on Rapid Prototyping. Dayton, Ohio, 1991, 354-357. doi: 10.1007/s11465-013-0248-8 |
| [3] | Lewis, J. A. Direct ink writing of 3D functional materials. Advanced Functional Materials 16, 2193-2204 (2006). doi: 10.1002/adfm.200600434 |
| [4] | Napadensky, Eduardo. Inkjet 3D printing. World Scientific, New Jersey, 2010. |
| [5] | Kempe, M., Westphal, P. & Grau, W. G. V. F. Laser beam machining. (2013). |
| [6] | Ge, Q. et al. Multimaterial 4D printing with tailorable shape memory polymers. Scientific Reports 6, 31110 (2016). doi: 10.1038/srep31110 |
| [7] | Wang, Q. M. et al. Lightweight mechanical metamaterials with tunable negative thermal expansion. Physical Review Letters 117, 175901 (2016). doi: 10.1103/PhysRevLett.117.175901 |
| [8] | Kowsari, K. et al. High-efficiency high-resolution multimaterial fabrication for digital light processing-based three-dimensional printing. 3D Printing and Additive Manufacturing 5, 185-193 (2018). doi: 10.1089/3dp.2018.0004 |
| [9] | Gong, H. et al. Optical approach to resin formulation for 3D printed microfluidics. RSC Advances 5, 106621-106632 (2015). doi: 10.1039/C5RA23855B |
| [10] | Gong, H. et al. Custom 3D printer and resin for 18 μm × 20 μm microfluidic flow channels. Lab on a Chip 17, 2899-2909 (2017). doi: 10.1039/C7LC00644F |
| [11] | Miri, A. K. et al. Microfluidics-enabled multimaterial maskless stereolithographic bioprinting. Advanced Materials 30, 1800242 (2018). doi: 10.1002/adma.201800242 |
| [12] | Zhang, Y. F. et al. Miniature pneumatic actuators for soft robots by high-resolution multimaterial 3D printing. Advanced Materials Technologies 4, 1900427 (2019). doi: 10.1002/admt.201900427 |
| [13] | Espinosa-Hoyos, D. et al. Engineered 3D-printed artificial axons. Scientific Reports 8, 478 (2018). doi: 10.1038/s41598-017-18744-6 |
| [14] | Yuan, C. et al. Ultrafast three-dimensional printing of optically smooth microlens arrays by oscillation-assisted digital light processing. ACS Applied Materials & Interfaces 11, 40662-40668 (2019). |
| [15] | Bártolo, P. J. Stereolithography: Materials, Processes and Applications. (New York: Springer, 2011). |
| [16] | Kowsari, K. et al. Photopolymer formulation to minimize feature size, surface roughness, and stair-stepping in digital light processing-based three-dimensional printing. Additive Manufacturing 24, 627-638 (2018). doi: 10.1016/j.addma.2018.10.037 |
| [17] | Sun, C. et al. Projection micro-stereolithography using digital micro-mirror dynamic mask. Sensors and Actuators A:Physical 121, 113-120 (2005). doi: 10.1016/j.sna.2004.12.011 |
| [18] | Lee, M. P. et al. Development of a 3D printer using scanning projection stereolithography. Scientific Reports 5, 9875 (2015). doi: 10.1038/srep09875 |
| [19] | Zheng, X. Y. et al. Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system. Review of Scientific Instruments 83, 125001 (2012). doi: 10.1063/1.4769050 |
| [20] | Zheng, X. Y. et al. Multiscale metallic metamaterials. Nature Materials 15, 1100-1106 (2016). doi: 10.1038/nmat4694 |
| [21] | Zheng, X. Y. et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373-1377 (2014). doi: 10.1126/science.1252291 |
| [22] | EnvisionTEC, Inc. at https://envisiontec.com. |
| [23] | Shusteff, M. et al. One-step volumetric additive manufacturing of complex polymer structures. Science Advances 3, eaao5496 (2017). doi: 10.1126/sciadv.aao5496 |
| [24] | Walker, D. A., Hedrick, J. L. & Mirkin, C. A. Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface. Science 366, 360-364 (2019). doi: 10.1126/science.aax1562 |
| [25] | Kewitsch, A. S. & Yariv, A. Self-focusing and self-trapping of optical beams upon photopolymerization. Optics Letters 21, 24-26 (1996). doi: 10.1364/OL.21.000024 |
| [26] | Kewitsch, A. S. & Yariv, A. Nonlinear optical properties of photoresists for projection lithography. Applied Physics Letters 68, 455-457 (1996). doi: 10.1063/1.116411 |
| [27] | Shoji, S. & Kawata, S. Optically-induced growth of fiber patterns into a photopolymerizable resin. Applied Physics Letters 75, 737-739 (1999). doi: 10.1063/1.124498 |
| [28] | Shoji, S. et al. Self-written waveguides in photopolymerizable resins. Optics Letters 27, 185-187 (2002). doi: 10.1364/OL.27.000185 |
| [29] | Miwa, M. et al. Femtosecond two-photon stereo-lithography. Applied Physics A 73, 561-566 (2001). doi: 10.1007/s003390100934 |
| [30] | Wu, J. T. et al. Evolution of material properties during free radical photopolymerization. Journal of the Mechanics and Physics of Solids 112, 25-49 (2018). doi: 10.1016/j.jmps.2017.11.018 |
| [31] | Jacobs, P. F. Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography. (Dearborn: Society of Manufacturing Engineers, 1992). |
| [32] | Jariwala, A. S. et al. Modeling effects of oxygen inhibition in mask-based stereolithography. Rapid Prototyping Journal 17, 168-175 (2011). doi: 10.1108/13552541111124734 |
| [33] | Atai, M. & Watts, D. C. A new kinetic model for the photopolymerization shrinkage-strain of dental composites and resin-monomers. Dental Materials 22, 785-791 (2006). doi: 10.1016/j.dental.2006.02.009 |
| [34] | Li, H. Y. et al. Modeling the nonlinear photoabsorptive behavior during self-written waveguide formation in a photopolymer. Journal of the Optical Society of America B 32, 912-922 (2015). doi: 10.1364/JOSAB.32.000912 |
| [35] | Belgacem, M. B. et al. Light induced self-written waveguides interactions in photopolymer media. Optics Express 23, 20841-20848 (2015). doi: 10.1364/OE.23.020841 |
| [36] | Kagami, M., Yamashita, T. & Ito, H. Light-induced self-written three-dimensional optical waveguide. Applied Physics Letters 79, 1079-1081 (2001). doi: 10.1063/1.1389516 |
| [37] | Monro, T. M. et al. Observation of self-trapping of light in a self-written channel in a photosensitive glass. Physical Review Letters 80, 4072-4075 (1998). doi: 10.1103/PhysRevLett.80.4072 |
| [38] | Hill, K. O. et al. Photosensitivity in optical fiber waveguides: application to reflection filter fabrication. Applied Physics Letters 32, 647-649 (1978). doi: 10.1063/1.89881 |
| [39] | Frisken, S. J. Light-induced optical waveguide uptapers. Optics Letters 18, 1035-1037 (1993). doi: 10.1364/OL.18.001035 |
| [40] | Brocklesby, W. S. et al. Optically written waveguides in ion implanted Bi4Ge3O12. Optical Materials 1, 177-184 (1992). doi: 10.1016/0925-3467(92)90026-J |
| [41] | Biria, S. & Hosein, I. D. Control of morphology in polymer blends through light self-trapping: an in situ study of structure evolution, reaction kinetics, and phase separation. Macromolecules 50, 3617-3626 (2017). doi: 10.1021/acs.macromol.7b00484 |
| [42] | Kagami, M. et al. Light-induced self-written optical waveguides. IEICE Transactions on Electronics E90-C, 1061-1070 (2007). |
| [43] | Sugihara, O. et al. Serially grafted polymer optical waveguides fabricated by light-induced self-written waveguide technique. Optics Letters 33, 294-296 (2008). doi: 10.1364/OL.33.000294 |
| [44] | Pathreeker, S. et al. Observation of intensity dependent phase-separation in photoreactive monomer–nanoparticle formulations under non-uniform visible light irradiation. Soft Matter 16, 7256-7269 (2020). doi: 10.1039/D0SM00922A |
| [45] | Biria, S. et al. Direct light-writing of nanoparticle-based metallo-dielectric optical waveguide arrays over silicon solar cells for wide-angle light collecting modules. Advanced Optical Materials 7, 1900661 (2019). doi: 10.1002/adom.201900661 |
| [46] | Barsella, A., Dorkenoo, H. & Mager, L. Near infrared two-photon self-confinement in photopolymers for light induced self-written waveguides fabrication. Applied Physics Letters 100, 221102 (2012). doi: 10.1063/1.4722925 |
| [47] | Zohrabyan, A. et al. Self-written gradient double claddlike optical guiding channels of high stability. Applied Physics Letters 91, 111912 (2007). doi: 10.1063/1.2770775 |
| [48] | Tomlinson, W. J. et al. Photoinduced refractive index increase in poly(methylmethacrylate) and its applications. Applied Physics Letters 16, 486-489 (1970). doi: 10.1063/1.1653076 |
| [49] | Soppera, O., Jradi, S. & Lougnot, D. J. Photopolymerization with microscale resolution: influence of the physico-chemical and photonic parameters. Journal of Polymer Science Part A:Polymer Chemistry 46, 3783-3794 (2008). doi: 10.1002/pola.22727 |
| [50] | Dislich, H. Plastics as optical materials. Angewandte Chemie International Edition 18, 49-59 (1979). doi: 10.1002/anie.197900491 |
| [51] | Kudo, H. et al. Novel materials for large change in refractive index: synthesis and photochemical reaction of the ladderlike poly(silsesquioxane) containing norbornadiene, azobenzene, and anthracene groups in the side chains. Macromolecules 39, 1759-1765 (2006). doi: 10.1021/ma052147m |
| [52] | Aloui, F. et al. Refractive index evolution of various commercial acrylic resins during photopolymerization. Express Polymer Letters 12, 966-971 (2018). doi: 10.3144/expresspolymlett.2018.83 |
| [53] | Liu, J. G. & Ueda, M. High refractive index polymers: fundamental research and practical applications. Journal of Materials Chemistry 19, 8907-8919 (2009). doi: 10.1039/b909690f |
| [54] | Samusjew, A. et al. Inkjet printing of soft, stretchable optical waveguides through the photopolymerization of high-profile linear patterns. ACS Applied Materials & Interfaces 9, 4941-4947 (2017). |
| [55] | Zhang, J. H. & Saravanamuttu, K. The dynamics of self-trapped beams of incoherent white light in a free-radical photopolymerizable medium. Journal of the American Chemical Society 128, 14913-14923 (2006). doi: 10.1021/ja0645335 |
| [56] | Tolstik, E. et al. Self-trapping waveguiding structures in nonlinear photorefractive media based on Plexiglas with phenanthrenequinone molecules. Proceedings of SPIE 8429 Optical modeling and Design II. Brussels, Belgium: SPIE, 2012, 84290W. |
| [57] | Tolstik, E. et al. Formation of self-trapping waveguides in bulk PMMA media doped with Phenanthrenequinone. Optics Express 22, 3228-3233 (2014). doi: 10.1364/OE.22.003228 |
| [58] | Hsiao, Y. N., Whang, W. T. & Lin, S. H. Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) hybrid materials. Optical Engineering 43, 1993 (2004). doi: 10.1117/1.1774196 |
| [59] | Hsu, K. Y. et al. Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage. Optical Engineering 42, 1390 (2003). doi: 10.1117/1.1564102 |
| [60] | Becker, M. R. et al. Waveguide optical properties of polystyrene doped with p-nitroaniline derivatives. Optical Materials 32, 1526-1531 (2010). doi: 10.1016/j.optmat.2010.06.015 |
| [61] | Paul, S. et al. Channel waveguide applications. Texte - Rev. Crit. Theor. Litt. 288, 150-154 (1996). |
| [62] | Morim, D. R. et al. Opto-chemo-mechanical transduction in photoresponsive gels elicits switchable self-trapped beams with remote interactions. Proceedings of the National Academy of Sciences of the United States of America 117, 3953-3959 (2020). doi: 10.1073/pnas.1902872117 |
| [63] | Kleine, T. S. et al. Refractive index contrast polymers: photoresponsive systems with spatial modulation of refractive index for photonics. ACS Macro Letters 9, 416-421 (2020). doi: 10.1021/acsmacrolett.9b00919 |
| [64] | Tolstik, E. et al. Broadening of the light self-trapping due to thermal defocusing in PQ-PMMA polymeric layers. Optics Express 19, 2739-2747 (2011). doi: 10.1364/OE.19.002739 |
| [65] | Emami, M. M. & Rosen, D. W. An improved vat photopolymerization cure model demonstrates photobleaching effects. Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium – an Additive Manufacturing Conference. Austin, USA, 2020. |
| [66] | Bowman, C. N. & Peppas, N. A. A kinetic gelation method for the simulation of free-radical polymerizations. Chemical Engineering Science 47, 1411-1419 (1992). doi: 10.1016/0009-2509(92)80286-L |
| [67] | Fouassier, J. P. & Burget, X. A. D. Photopolymerization reactions under visible lights: principle, mechanisms and examples of applications. Progress in Organic Coatings 47, 16-36 (2003). doi: 10.1016/S0300-9440(03)00011-0 |
| [68] | Andrzejewska, E. Photopolymerization kinetics of multifunctional monomers. Progress in Polymer Science 26, 605-665 (2001). doi: 10.1016/S0079-6700(01)00004-1 |
| [69] | Decker, C. The use of UV irradiation in polymerization. Polymer International 45, 133-141 (1998). doi: 10.1002/(SICI)1097-0126(199802)45:2<133::AID-PI969>3.0.CO;2-F |
| [70] | Dorkenoo, K. et al. Quasi-solitonic behavior of self-written waveguides created by photopolymerization. Optics Letters 27, 1782-1784 (2002). doi: 10.1364/OL.27.001782 |
| [71] | Chen, F. H. et al. Synthesis of micropillar arrays via photopolymerization: an in situ study of light-induced formation, growth kinetics, and the influence of oxygen inhibition. Macromolecules 50, 5767-5778 (2017). doi: 10.1021/acs.macromol.7b01274 |
| [72] | Zhang, Z. Y. et al. Thermo-optic coefficients of polymers for optical waveguide applications. Polymer 47, 4893-4896 (2006). doi: 10.1016/j.polymer.2006.05.035 |
| [73] | Decker, C. & Jenkins, A. D. Kinetic approach of oxygen inhibition in ultraviolet- and laser-induced polymerizations. Macromolecules 18, 1241-1244 (1985). doi: 10.1021/ma00148a034 |
| [74] | Koseki, K., Sakamaki, H. & Jeong, K. M. In situ measurement of shrinkage behavior of photopolymers. Journal of Photopolymer Science and Technology 26, 567-572 (2013). doi: 10.2494/photopolymer.26.567 |
| [75] | Jacobsen, A. J., Barvosa-Carter, W. & Nutt, S. Micro-scale truss structures formed from self-propagating photopolymer waveguides. Advanced Materials 19, 3892-3896 (2007). doi: 10.1002/adma.200700797 |
| [76] | Allen, N. S. Photoinitiators for UV and visible curing of coatings: mechanisms and properties. Journal of Photochemistry and Photobiology A:Chemistry 100, 101-107 (1996). doi: 10.1016/S1010-6030(96)04426-7 |
| [77] | Chandross, E. A. et al. Photolocking-a new technique for fabricating optical waveguide circuits. Applied Physics Letters 24, 72-74 (1974). doi: 10.1063/1.1655099 |
| [78] | Tomlinson, W. J. et al. Multicomponent photopolymer systems for volume phase holograms and grating devices. Applied Optics 15, 534-541 (1976). doi: 10.1364/AO.15.000534 |
| [79] | Biria, S. & Hosein, I. D. Superhydrophobic microporous substrates via photocuring: coupling optical pattern formation to phase separation for process-tunable pore architectures. ACS Applied Materials & Interfaces 10, 3094-3105 (2018). |
| [80] | Hosein, I. D. Light-directed organization of polymer materials from photoreactive formulations. Chemistry of Materials 32, 2673-2687 (2020). doi: 10.1021/acs.chemmater.9b05373 |
| [81] | Biria, S. et al. Optical autocatalysis establishes novel spatial dynamics in phase separation of polymer blends during photocuring. ACS Macro Letters 5, 1237-1241 (2016). doi: 10.1021/acsmacrolett.6b00659 |
| [82] | Biria, S. & Hosein, I. D. Simulations of morphology evolution in polymer blends during light self-trapping. The Journal of Physical Chemistry C 121, 11717-11726 (2017). doi: 10.1021/acs.jpcc.7b03348 |
| [83] | Li, H. S. et al. Prototyping of superhydrophobic surfaces from structure-tunable micropillar arrays using visible light photocuring. Advanced Engineering Materials 21, 1801150 (2019). doi: 10.1002/adem.201801150 |
| [84] | Boddapati, A. Modeling cure depth during photopolymerization of multifunctional acrylates. MSc thesis, Georgia Institute of Technology, Atlanta, 2010. |
| [85] | Moad, G. & Solomon, D. H. The Chemistry of Radical Polymerization. 2nd edn. (Amsterdam: Elsevier Science, 2006). |
| [86] | Odian, G. Principles of Polymerization. 4th edn. (Chichester: John Wiley & Sons Ltd., 2004). |
| [87] | Goodner, M. D. & Bowman, C. N. Development of a comprehensive free radical photopolymerization model incorporating heat and mass transfer effects in thick films. Chemical Engineering Science 57, 887-900 (2002). doi: 10.1016/S0009-2509(01)00287-1 |
| [88] | Tang, Y. Y. Stereolithography cure process modeling. PhD thesis, Georgia Institute of Technology, Atlanta, 2005. |
| [89] | Slopek, R. P. et al. In situ monitoring of mechanical properties during photopolymerization with particle tracking microrheology. Polymer 47, 2263-2268 (2006). doi: 10.1016/j.polymer.2006.01.095 |
| [90] | Gao, K. et al. Multiphysics modeling of photo-polymerization in stereolithography printing process and validation. 2018. |
| [91] | Emami, M. M., Jamshidian, M. & Rosen, D. W. Multiphysics modeling and experiments of grayscale photopolymerization with application to microlens fabrication. Journal of Manufacturing Science and Engineering 143, 091005 (2021). doi: 10.1115/1.4050549 |
| [92] | Gao, W. et al. The status, challenges, and future of additive manufacturing in engineering. Computer-Aided Design 69, 65-89 (2015). doi: 10.1016/j.cad.2015.04.001 |
| [93] | Miller, G. A. et al. Modeling of photobleaching for the photoinitiation of thick polymerization systems. Journal of Polymer Science Part A:Polymer Chemistry 40, 793-808 (2002). doi: 10.1002/pola.10162 |
| [94] | Terrones, G. & Pearlstein, A. J. Effects of optical attenuation and consumption of a photobleaching initiator on local initiation rates in photopolymerizations. Macromolecules 34, 3195-3204 (2001). doi: 10.1021/ma001235y |
| [95] | Jariwala, A. S. Modeling and process planning for exposure controlled projection lithography. PhD thesis, Georgia Institute of Technology, Atlanta, 2013. |
| [96] | Kang, H. W., Park, J. H. & Cho, D. W. A pixel based solidification model for projection based stereolithography technology. Sensors and Actuators A:Physical 178, 223-229 (2012). doi: 10.1016/j.sna.2012.01.016 |
| [97] | Zhou, C. et al. Development of Multi-Material MaskImage-Projection-Based Stereolithography for the Fabrication of Digital Materials. Proceedings of Solid Freeform Fabrication 2011, Austin, TX, USA. http://utw10945.utweb.utexas.edu/ Manuscripts/2011/2011-06-Zhou.pdf. |
| [98] | Hecht, E. Optics. 4th edn. (San Francisco: Addison Wesley, 2002). |
| [99] | Marburger, J. H., and E. Dawes. "Dynamical formation of a small-scale filament. " Physical Review Letters 21.8 (1968): 556. |
| [100] | Chiao, R. Y., Garmire, E. & Townes, C. H. Self-trapping of optical beams. Phys. Rev. Lett 13, 479-482 (1964). doi: 10.1103/PhysRevLett.13.479 |
| [101] | Anderson, A. & Peters, K. Finite element simulation of self-writing waveguide formation through photopolymerization. Journal of Lightwave Technology 27, 5529-5539 (2009). doi: 10.1109/JLT.2009.2031823 |
| [102] | Monro, T. M., De Sterke, C. M. & Poladian, L. Analysis of self-written waveguide experiments. Journal of the Optical Society of America B 16, 1680-1685 (1999). doi: 10.1364/JOSAB.16.001680 |
| [103] | Gere, J. M. Mechanics of Materials. 5th edn. (Pacific Grove: Brooks/Cole, 2001). |
| [104] | Heller, W. Remarks on refractive index mixture rules. The Journal of Physical Chemistry 69, 1123-1129 (1965). doi: 10.1021/j100888a006 |
| [105] | Li, H. Y. et al. Self-written waveguides in a dry acrylamide/polyvinyl alcohol photopolymer material. Applied Optics 53, 8086-8094 (2014). doi: 10.1364/AO.53.008086 |
| [106] | Cassidy, D. J. et al. Coupling of self-written waveguides (SWW) in photopolymer and reverse manipulation. Proceedings of SPIE 11029 Micro-structured and Specialty Optical Fibres VI. Prague, Czech Republic: SPIE, 2019, 110290Y. |
| [107] | Li, H. Y. et al. Beam self-cleanup by use of self-written waveguide generated by photopolymerization. Optics Letters 40, 2981-2984 (2015). doi: 10.1364/OL.40.002981 |
| [108] | Emami, M. M. & Rosen, D. W. Modeling of light field effect in deep vat polymerization for grayscale lithography application. Additive Manufacturing 36, 101595 (2020). doi: 10.1016/j.addma.2020.101595 |
| [109] | Dendukuri, D. et al. Modeling of oxygen-inhibited free radical photopolymerization in a PDMS microfluidic device. Macromolecules 41, 8547-8556 (2008). doi: 10.1021/ma801219w |
| [110] | Schaedler, T. A. et al. Ultralight metallic microlattices. Science 334, 962-965 (2011). doi: 10.1126/science.1211649 |
| [111] | Han, S. C., Lee, J. W. & Kang, K. A new type of low density material: shellular. Advanced Materials 27, 5506-5511 (2015). doi: 10.1002/adma.201501546 |
| [112] | Clough, E. C. et al. Elastomeric microlattice impact attenuators. Matter 1, 1519-1531 (2019). doi: 10.1016/j.matt.2019.10.004 |
| [113] | Doty, R. E., Kolodziejska, J. A. & Jacobsen, A. J. Hierarchical polymer microlattice structures. Advanced Engineering Materials 14, 503-507 (2012). doi: 10.1002/adem.201200007 |
| [114] | Roper, C. S. et al. Scalable 3D bicontinuous fluid networks: polymer heat exchangers toward artificial organs. Advanced Materials 27, 2479-2484 (2015). doi: 10.1002/adma.201403549 |
| [115] | Biria, S. et al. Polymer encapsulants incorporating light-guiding architectures to increase optical energy conversion in solar cells. Advanced Materials 30, 1705382 (2018). doi: 10.1002/adma.201705382 |
| [116] | Chen, F. H. et al. Microfiber optic arrays as top coatings for front-contact solar cells toward mitigation of shading loss. ACS Applied Materials & Interfaces 11, 47422-47427 (2019). |
| [117] | Günther, A. et al. Cladded self-written multimode step-index waveguides using a one-polymer approach. Optics Letters 40, 1830-1833 (2015). doi: 10.1364/OL.40.001830 |
| [118] | Hosein, I. D. et al. Waveguide encoded lattices (WELs): slim polymer films with panoramic fields of view (FOV) and multiple imaging functionality. Advanced Functional Materials 27, 1702242 (2017). doi: 10.1002/adfm.201702242 |
| [119] | Jeong, K. H., Kim, J. & Lee, L. P. Biologically inspired artificial compound eyes. Science 312, 557-561 (2006). doi: 10.1126/science.1123053 |
| [120] | Martinez, E., St-Pierre, J. P. & Variola, F. Advanced bioengineering technologies for preclinical research. Advances in Physics:X 4, 1622451 (2019). |
| [121] | Castaño, A. G. et al. Dynamic photopolymerization produces complex microstructures on hydrogels in a moldless approach to generate a 3D intestinal tissue model. Biofabrication 11, 025007 (2019). doi: 10.1088/1758-5090/ab0478 |
| [122] | Espinosa-Hoyos, D. Engineering myelination in vitro. PhD thesis, Massachusetts Institute of Technology, Cambridge, 2020. |
| [123] | Yasuga, H. et al. Fluid interfacial energy drives the emergence of three-dimensional periodic structures in micropillar scaffolds. Nature Physics 17, 794-800 (2021). doi: 10.1038/s41567-021-01204-4 |
| [124] | Hansson, J. et al. Synthetic microfluidic paper: high surface area and high porosity polymer micropillar arrays. Lab on a Chip 16, 298-304 (2016). doi: 10.1039/C5LC01318F |
| [125] | Hwang, H. H. et al. High throughput direct 3D bioprinting in multiwell plates. Biofabrication 13, 025007 (2021). doi: 10.1088/1758-5090/ab89ca |
| [126] | Kim, S. et al. Scalable 3D printing of aperiodic cellular structures by rotational stacking of integral image formation. Science Advances 7, eabh1200 (2021). doi: 10.1126/sciadv.abh1200 |