[1] Adinolfi, V. & Sargent, E. H. Photovoltage field-effect transistors. Nature 542, 324–327 (2017). doi: 10.1038/nature21050
[2] Dou, L. T. et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5, 5404 (2014). doi: 10.1038/ncomms6404
[3] Fang, Y. J. et al. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photon. 9, 679–686 (2015). doi: 10.1038/nphoton.2015.156
[4] Gan, X. T. et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photon. 7, 883–887 (2013). doi: 10.1038/nphoton.2013.253
[5] Goossens, S. et al. Broadband image sensor array based on graphene-CMOS integration. Nat. Photon. 11, 366–371 (2017). doi: 10.1038/nphoton.2017.75
[6] Saidaminov, M. I. et al. Planar-integrated single-crystalline perovskite photodetectors. Nat. Commun. 6, 8724 (2015). doi: 10.1038/ncomms9724
[7] Saran, R. & Curry, R. J. Lead sulphide nanocrystal photodetector technologies. Nat. Photon. 10, 81–92 (2016). doi: 10.1038/nphoton.2015.280
[8] Wu, X. H. et al. Pursuing polymer dielectric interfacial effect in organic transistors for photosensing performance optimization. Adv. Sci. 4, 1700442 (2017). doi: 10.1002/advs.201700442
[9] Wu, X. H. et al. Distinguishable detection of ultraviolet, visible, and infrared spectrum with high-responsivity perovskite-based flexible photosensors. Small 14, 1800527 (2018). doi: 10.1002/smll.201800527
[10] Lu, F. et al. Thermopile detector of light ellipticity. Nat. Commun. 7, 12994 (2016). doi: 10.1038/ncomms12994
[11] Hsu, A. L. et al. Graphene-based thermopile for thermal imaging applications. Nano Lett. 15, 7211–7216 (2015). doi: 10.1021/acs.nanolett.5b01755
[12] Li, W. et al. A front-side microfabricated tiny-size thermopile infrared detector with high sensitivity and fast response. IEEE Trans. Electron Devices 66, 2230–2237 (2019). doi: 10.1109/TED.2019.2903589
[13] Lin, Q. Q. et al. Filterless narrowband visible photodetectors. Nat. Photon. 9, 687–694 (2015). doi: 10.1038/nphoton.2015.175
[14] Yang, Z. Y. et al. Single-nanowire spectrometers. Science 365, 1017–1020 (2019). doi: 10.1126/science.aax8814
[15] Sun, H. X. et al. In situ formed gradient bandgap-tunable perovskite for ultrahigh-speed color/spectrum-sensitive photodetectors via electron-donor control. Adv. Mater. 32, 1908108 (2020). doi: 10.1002/adma.201908108
[16] Dacey, D. M. et al. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433, 749–754 (2005). doi: 10.1038/nature03387
[17] Guo, C. L. & Zhang, L. M. A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression. IEEE Trans. Image Process. 19, 185–198 (2010). doi: 10.1109/TIP.2009.2030969
[18] Wang, H. L. et al. A ferroelectric/electrochemical modulated organic synapse for ultraflexible, artificial visual-perception system. Adv. Mater. 30, 1803961 (2018). doi: 10.1002/adma.201803961
[19] Gu, L. L. et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581, 278–282 (2020). doi: 10.1038/s41586-020-2285-x
[20] Theeuwes, J. Perceptual selectivity for color and form. Percept. Psychophys. 51, 599–606 (1992). doi: 10.3758/BF03211656
[21] Saidaminov, M. I. et al. Perovskite photodetectors operating in both narrowband and broadband regimes. Adv. Mater. 28, 8144–8149 (2016). doi: 10.1002/adma.201601235
[22] Hutter, E. M. et al. Direct-indirect character of the bandgap in methylammonium lead iodide perovskite. Nat. Mater. 16, 115–120 (2017). doi: 10.1038/nmat4765
[23] Cho, H. et al. Improving the stability of metal halide perovskite materials and light-emitting diodes. Adv. Mater. 30, 1704587 (2018). doi: 10.1002/adma.201704587
[24] Kojima, A. et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). doi: 10.1021/ja809598r
[25] Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013). doi: 10.1038/nature12340
[26] Feng, J. G. et al. Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors. Nat. Electron. 1, 404–410 (2018). doi: 10.1038/s41928-018-0101-5
[27] Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015). doi: 10.1021/nl5048779
[28] Liang, J. et al. All-inorganic perovskite solar cells. J. Am. Chem. Soc. 138, 15829–15832 (2016). doi: 10.1021/jacs.6b10227
[29] Swarnkar, A. et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016). doi: 10.1126/science.aag2700
[30] Yuan, J. Y. et al. Metal halide perovskites in quantum dot solar cells: progress and prospects. Joule 4, 1160–1185 (2020). doi: 10.1016/j.joule.2020.04.006
[31] Hoffman, J. B. et al. Transformation of sintered CsPbBr3 nanocrystals to cubic CsPbI3 and gradient CsPbBrxI3-x through halide exchange. J. Am. Chem. Soc. 138, 8603–8611 (2016). doi: 10.1021/jacs.6b04661
[32] Li, X. M. et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 26, 2435–2445 (2016). doi: 10.1002/adfm.201600109
[33] Zeng, J. P. et al. Combination of solution-phase process and halide exchange for all-inorganic, highly stable CsPbBr3 perovskite nanowire photodetector. Science China. Materials 62, 65–73 (2019).
[34] Tong, S. C. et al. High-performance broadband perovskite photodetectors based on CH3NH3PbI3/C8BTBT heterojunction. Adv. Electron. Mater. 3, 1700058 (2017). doi: 10.1002/aelm.201700058
[35] Li, L. et al. Interfacial electronic structures of photodetectors based on C8BTBT/perovskite. ACS Appl. Mater. Interfaces 10, 20959–20967 (2018). doi: 10.1021/acsami.8b03355
[36] Petritz, R. L. Theory of photoconductivity in semiconductor films. Phys. Rev. 104, 1508–1516 (1956). doi: 10.1103/PhysRev.104.1508
[37] Wu, W. Q. et al. Flexible photodetector arrays based on patterned CH3NH3PbI3-xClx perovskite film for real-time photosensing and imaging. Adv. Mater. 31, 1805913 (2019). doi: 10.1002/adma.201805913
[38] Hu, W. et al. High-performance flexible photodetectors based on high-quality perovskite thin films by a vapor-solution method. Adv. Mater. 29, 1703256 (2017). doi: 10.1002/adma.201703256
[39] Lee, H. M. et al. Near-infrared photoresponsivity of ZnON thin-film transistor with energy band-tunable semiconductor. ACS Appl. Mater. Interfaces 10, 30541–30547 (2018). doi: 10.1021/acsami.8b08568
[40] Haider, A., Kizir, S. & Biyikli, N. Low-temperature self-limiting atomic layer deposition of wurtzite InN on Si(100). AIP Adv. 6, 045203 (2016). doi: 10.1063/1.4946786
[41] Ma, H. P. et al. Composition and properties control growth of high-quality GaOxNy film by one-step plasma-enhanced atomic layer deposition. Chem. Mater. 31, 7405–7416 (2019). doi: 10.1021/acs.chemmater.9b02061
[42] Ding, X. W. et al. Nitrogen-doped ZnO film fabricated via rapid low-temperature atomic layer deposition for high-performance ZnON transistors. IEEE Trans. Electron Devices 65, 3283–3290 (2018). doi: 10.1109/TED.2018.2848275
[43] Zhu, X. X. et al. Broadband perovskite quantum dot spectrometer beyond human visual resolution. Light. Sci. Appl. 9, 73 (2020). doi: 10.1038/s41377-020-0301-4
[44] Li, G. J. et al. Silicon nanomembrane phototransistor flipped with multifunctional sensors toward smart digital dust. Sci. Adv. 6, eaaz6511 (2020). doi: 10.1126/sciadv.aaz6511