[1] Stout, K. J. & Blunt, L. Three Dimensional Surface Topography. (London: Penton Press, 2000).
[2] Cuche, E., Bevilacqua, F. & Depeursinge, C. Digital holography for quantitative phase-contrast imaging. Optics Letters 24, 291-293 (1999). doi: 10.1364/OL.24.000291
[3] Mann, C. J., et al. High-resolution quantitative phase-contrast microscopy by digital holography. Optics Express 13, 8693-8698 (2005). doi: 10.1364/OPEX.13.008693
[4] Marquet, P., Depeursinge, C. & Magistretti, P. J. Exploring neural cell dynamics with digital holographic microscopy. Annual Review of Biomedical Engineering 15, 407-431 (2013). doi: 10.1146/annurev-bioeng-071812-152356
[5] Osten, W. Optical Inspection of Microsystems. (Boca Raton: Taylor & Francis, 2007).
[6] Merola, F., et al. Tomographic flow cytometry by digital holography. Light: Science & Applications 6, e16241 (2017).
[7] Kim, M. K. Digital Holographic Microscopy. (New York: Springer, 2011).
[8] Ghiglia, D. C. & Pritt, M. D. Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software. (New York: Wiley, 1998).
[9] Gass, J., Dakoff, A. & Kim, M. K. Phase imaging without 2p ambiguity by multiwavelength digital holograph. Optics Letters 28, 1141-1143 (2003). doi: 10.1364/OL.28.001141
[10] Parshall, D. & Kim, M. K. Digital holographic microscopy with dual-wavelength phase unwrapping. Applied Optics 45, 451-459 (2006). doi: 10.1364/AO.45.000451
[11] Khmaladze, A., et al. Simultaneous dual-wavelength reflection digital holography applied to the study of the porous coal samples. Applied Optics 47, 3202-3210 (2008).
[12] Cheng, Y. Y. & Wyant, J. C. Two-wavelength phase shifting interferometry. Applied Optics 23, 4539-4543 (1984). doi: 10.1364/AO.23.004539
[13] Wagner, C., Osten, W. & Seebacher, S. Direct shape measurement by digital wavefront reconstruction and multi-wavelength contouring. Optical Engineering 39, 79-85 (2000). doi: 10.1117/1.602338
[14] Wada, A., Ka to, M. & Ishii, Y. Large step-height measurements using multiple-wavelength holographic interferometry with tunable laser diodes. Journal of the Optical Society of America A 25, 3013-3020 (2008). doi: 10.1364/JOSAA.25.003013
[15] Mann, C. J., et al. Quantitative phase imaging by three-wavelength digital holography. Optics Express 16, 9753-9764 (2008). doi: 10.1364/OE.16.009753
[16] De Nicola, S., et al. Recovering correct phase information in multiwavelength digital holographic microscopy by compensation for chromatic aberrations. Optics Letters 30, 2706-2708 (2005). doi: 10.1364/OL.30.002706
[17] Yamaguchi, I., Oh ta, S. & Kato, J. I. Surface contouring by phase-shifting digital holography. Optics and Lasers in Engineering 36, 417-428 (2001). doi: 10.1016/S0143-8166(01)00069-0
[18] Gonzalez, R. C. & Woods, R. E. Digital Image Processing. 3rd edn. (Upper Saddle River: Pearson, 2016)
[19] Bianco, V., et al. Quasi noise-free digital holography. Light: Science & Applications 5, e16142 (2016).
[20] Xia, H. T., et al. Phase calibration unwrapping algorithm for phase data corrupted by strong decorrelation speckle noise. Optics Express 24, 28713-28730 (2016). doi: 10.1364/OE.24.028713
[21] Psota, P., et al. Multiple angle digital holography for the shape measurement of the unpainted tympanic membrane. Optics Express 28, 24614-24628 (2020). doi: 10.1364/OE.398919
[22] Kim, M. K. Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography. Optics Express 7, 305-310 (2000). doi: 10.1364/OE.7.000305
[23] Jeon, Y. & Hong, C. K. Optical section imaging of the tilted planes by illumination-angle-scanning digital interference holography. Applied Optics 49, 5110-5116 (2010). doi: 10.1364/AO.49.005110
[24] Dong, J., J ia, S. H. & Jiang, C. Surface shape measurement by multi-illumination lensless Fourier transform digital holographic interferometry. Optics Communications 402, 91-96 (2017). doi: 10.1016/j.optcom.2017.05.051
[25] Martinez-Carranza, J., et al. Multi-incidence digital holographic profilometry with high axial resolution and enlarged measurement range. Optics Express 28, 8185-8199 (2020). doi: 10.1364/OE.385743