[1] Yun, S. H. & Kwok, S. J. J. Light in diagnosis, therapy and surgery. Nat. Biomed. Eng. 1, 0008 (2017). doi: 10.1038/s41551-016-0008
[2] Zumbusch, A., Holtom, G. R. & Xie, X. S. Three-dimensional vibrational imaging by coherent anti-stokes Raman scattering. Phys. Rev. Lett. 82, 4142–4145 (1999). doi: 10.1103/PhysRevLett.82.4142
[3] Ploetz, E., Laimgruber, S., Berner, S., Zinth, W. & Gilch, P. Femtosecond stimulated Raman microscopy. Appl. Phys. B 87, 389–393 (2007). doi: 10.1007/s00340-007-2630-x
[4] Freudiger, C. W. et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322, 1857–1861 (2008). doi: 10.1126/science.1165758
[5] Nandakumar, P., Kovalev, A. & Volkmer, A. Vibrational imaging based on stimulated Raman scattering microscopy. N. J. Phys. 11, 033026 (2009). doi: 10.1088/1367-2630/11/3/033026
[6] Ozeki, Y., Dake, F., Kajiyama, S., Fukui, K. & Itoh, K. Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy. Opt. Express 17, 3651–3658 (2009). doi: 10.1364/OE.17.003651
[7] Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990). doi: 10.1126/science.2321027
[8] Xu, C., Zipfel, W., Shear, J. B., Williams, R. M. & Webb, W. W. Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc. Natl Acad. Sci. USA 93, 10763–10768 (1996). doi: 10.1073/pnas.93.20.10763
[9] Wokosin, D. L., Centonze, V. E., Crittenden, S. & White, J. Three-photon excitation fluorescence imaging of biological specimens using an all-solid-state laser. Bioimaging 4, 208–214 (1996). doi: 10.1002/1361-6374(199609)4:3<208::AID-BIO11>3.3.CO;2-A
[10] Hell, S. W. et al. Three-photon excitation in fluorescence microscopy. J. Biomed. Opt. 1, 71–74 (1996). doi: 10.1117/12.229062
[11] Campagnola, P. J., Wei, M. D., Lewis, A. & Loew, L. M. High-resolution nonlinear optical imaging of live cells by second harmonic generation. Biophys. J. 77, 3341–3349 (1999). doi: 10.1016/S0006-3495(99)77165-1
[12] Moreaux, L., Sandre, O. & Mertz, J. Membrane imaging by second-harmonic generation microscopy. J. Opt. Soc. Am. B 17, 1685–1694 (2000).
[13] Guesmi, K. et al. Dual-color deep-tissue three-photon microscopy with a multiband infrared laser. Light. Sci. Appl. 7, 12 (2018). doi: 10.1038/s41377-018-0012-2
[14] Shi, L. et al. Optical imaging of metabolic dynamics in animals. Nat. Commun. 9, 2995 (2018). doi: 10.1038/s41467-018-05401-3
[15] Wei, L. et al. Super-multiplex vibrational imaging. Nature 544, 465–470 (2017). doi: 10.1038/nature22051
[16] Ozeki, Y. et al. Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses. Opt. Express 18, 13708–13719 (2010). doi: 10.1364/OE.18.013708
[17] Wang, K. et al. Synchronized time-lens source for coherent Raman scattering microscopy. Opt. Express 23, 24019–24024 (2010). doi: 10.1364/OE.18.024019
[18] Nose, K. et al. Sensitivity enhancement of fiber-laser-based stimulated Raman scattering microscopy by collinear balanced detection technique. Opt. Express 20, 13958–13965 (2012). doi: 10.1364/OE.20.013958
[19] Karpf, S., Eibl, M., Wieser, W., Klein, T. & Huber, R. A time-encoded technique for fibre-based hyperspectral broadband stimulated Raman microscopy. Nat. Commun. 6, 6784 (2015). doi: 10.1038/ncomms7784
[20] Zhai, Y. H. et al. Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator. Appl. Phys. Lett. 98, 191106 (2011). doi: 10.1063/1.3589356
[21] Baumgartl, M. et al. All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion. Opt. Express 20, 4484–4493 (2012). doi: 10.1364/OE.20.004484
[22] Lefrancois, S. et al. Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy. Opt. Lett. 37, 1652–1654 (2012). doi: 10.1364/OL.37.001652
[23] Yang, K. et al. Low-repetition-rate all-fiber integrated optical parametric oscillator for coherent anti-Stokes Raman spectroscopy. Opt. Express 26, 17519–17528 (2018). doi: 10.1364/OE.26.017519
[24] Andresen, E. R., Nielsen, C. K., Thøgersen, J. & Keiding, S. R. Fiber laser-based light source for coherent anti-Stokes Raman scattering microspectroscopy. Opt. Express 15, 4848–4856 (2007). doi: 10.1364/OE.15.004848
[25] Pegoraro, A. F. et al. All-fiber CARS microscopy of live cells. Opt. Express 17, 20700–20706 (2009). doi: 10.1364/OE.17.020700
[26] Krauss, G. et al. Compact coherent anti-Stokes Raman scattering microscope based on a picosecond two-color Er:fiber laser system. Opt. Lett. 34, 2847–2849 (2009). doi: 10.1364/OL.34.002847
[27] Andresen, E. R., Berto, P. & Rigneault, H. Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse. Opt. Lett. 36, 2387–2389 (2011). doi: 10.1364/OL.36.002387
[28] Xie, R. et al. Multi-modal label-free imaging based on a femtosecond fiber laser. Biomed. Opt. Express 5, 2390–2396 (2014). doi: 10.1364/BOE.5.002390
[29] Crisafi, F. et al. Multimodal nonlinear microscope based on a compact fiber-format laser source. Spectrochim. Acta A Mol. Biomol. Spectrosc. 188, 135–140 (2018). doi: 10.1016/j.saa.2017.06.055
[30] Gambetta, A. et al. Fiber-format stimulated-Raman-scattering microscopy from a single laser oscillator. Opt. Lett. 35, 226–228 (2010). doi: 10.1364/OL.35.000226
[31] Selm, R. et al. Ultrabroadband background-free coherent anti-Stokes Raman scattering microscopy based on a compact Er:fiber laser system. Opt. Lett. 35, 3282–3284 (2010). doi: 10.1364/OL.35.003282
[32] Freudiger, C. W. et al. Stimulated Raman scattering microscopy with a robust fibre laser source. Nat. Photon 8, 153–159 (2014). doi: 10.1038/nphoton.2013.360
[33] Chen, K., Wu, T., Zhou, T., Wei, H. & Li, Y. Cascaded dual-soliton pulse stokes for broadband coherent Anti-Stokes Raman spectroscopy. IEEE Photonics J. 8, 1–8 (2016).
[34] Tu, H. et al. Stain-free histopathology by programmable supercontinuum pulses. Nat. Photon 10, 534–540 (2016). doi: 10.1038/nphoton.2016.94
[35] Orringer, D. A. et al. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy. Nat. Biomed. Eng. 1, 0027 (2017). doi: 10.1038/s41551-016-0027
[36] Jackson, S. D. Towards high-power mid-infrared emission from a fibre laser. Nat. Photon 6, 423–431 (2012). doi: 10.1038/nphoton.2012.149
[37] Jauregui, C., Limpert, J. & Tünnermann, A. High-power fibre lasers. Nat. Photon 7, 861–867 (2013). doi: 10.1038/nphoton.2013.273
[38] Fermann, M. E. & Hartl, I. Ultrafast fibre lasers. Nat. Photon 7, 868–874 (2013). doi: 10.1038/nphoton.2013.280
[39] Xu, C. & Wise, F. W. Recent advances in fibre lasers for nonlinear microscopy. Nat. Photon 7, 875–882 (2013). doi: 10.1038/nphoton.2013.284
[40] Spiegelberg, C. et al. Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003). J. Lightwave Technol. 22, 57–62 (2004). doi: 10.1109/JLT.2003.822208
[41] Xu, S. et al. 400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser. Opt. Lett. 36, 3708–3710 (2011). doi: 10.1364/OL.36.003708
[42] Snitzer, E., Po, H., Hakimi, F., Tumminelli, R. & McCollum, B. C. Double Clad, Offset Core Nd Fiber Laser in Optical Fiber Sensors, Vol. 2, paper PD5 of OSA Technical Digest Series (OSA, 1988).
[43] Zenteno, L. High-power double clad fiber lasers. J. Lightwave Technol. 11, 1435–1446 (1993). doi: 10.1109/50.241933
[44] Jeong, Y., Sahu, J. K., Payne, D. N. & Nilsson, J. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power. Opt. Express 12, 6088–6092 (2004). doi: 10.1364/OPEX.12.006088
[45] Strickland, D. & Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 56, 219–221 (1985). doi: 10.1016/0030-4018(85)90120-8
[46] Wei, X. et al. Breathing laser as an inertia-free swept source for high-quality ultrafast optical bioimaging. Opt. Lett. 39, 6593–6596 (2014). doi: 10.1364/OL.39.006593
[47] Sobon, G. et al. 260 fs and 1 nJ pulse generation from a compact, mode-locked Tm-doped fiber laser. Opt. Express 23, 31446–31451 (2015). doi: 10.1364/OE.23.031446
[48] Leitenstorfer, A., Fürst, C. & Laubereau, A. Widely tunable two-color mode-locked Ti:sapphire laser with pulse jitter of less than 2 fs. Opt. Lett. 20, 916–918 (1995). doi: 10.1364/OL.20.000916
[49] Chong, A., Buckley, J., Renninger, W. & Wise, F. All-normal-dispersion femtosecond fiber laser. Opt. Express 14, 10095–10100 (2006). doi: 10.1364/OE.14.010095
[50] Weiner, A. M. Ultrafast Optics (Wiley, 2009).
[51] Rusu, M., Herda, R. & Okhotnikov, O. G. Passively synchronized two-color mode-locked fiber system based on master-slave lasers geometry. Opt. Express 12, 4719–4724 (2004). doi: 10.1364/OPEX.12.004719
[52] Yoshitomi, D. et al. Ultralow-jitter passive timing stabilization of a mode-locked Er-doped fiber laser by injection of an optical pulse train. Opt. Lett. 31, 3243–3245 (2006). doi: 10.1364/OL.31.003243
[53] Hsiang, W., Chang, C., Cheng, C. & Lai, Y. Passive synchronization between a self-similar pulse and a bound-soliton bunch in a two-color mode-locked fiber laser. Opt. Lett. 34, 1967–1969 (2009). doi: 10.1364/OL.34.001967
[54] Taverner, D. et al. Highly efficient second-harmonic and sum-frequency generation of nanosecond pulses in a cascaded erbium-doped fiber: periodically poled lithium niobate source. Opt. Lett. 23, 162–164 (1998). doi: 10.1364/OL.23.000162
[55] Wei, Z., Kobayashi, Y., Zhang, Z. & Torizuka, K. Generation of two-color femtosecond pulses by self-synchronizing Ti:sapphire and Cr:forsterite lasers. Opt. Lett. 26, 1806–1808 (2001). doi: 10.1364/OL.26.001806
[56] Kiani, L., Lu, T. & Sharping, J. E. Comparison of amplitude noise of a fiber-optical parametric oscillator and a supercontinuum source. J. Opt. Soc. Am. B 31, 1986–1990 (2014). doi: 10.1364/JOSAB.31.001986
[57] Lamb, E. S. & Wise, F. W. Multimodal fiber source for nonlinear microscopy based on a dissipative soliton laser. Biomed. Opt. Express 6, 3248–3255 (2015). doi: 10.1364/BOE.6.003248
[58] Kim, J. & Song, Y. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications. Adv. Opt. Photon 8, 465–540 (2016). doi: 10.1364/AOP.8.000465
[59] Lai, C. S., Franke, T. F. & Gan, W. B. Opposite effects of fear conditioning and extinction on dendritic spine remodelling. Nature 483, 87–91 (2012). doi: 10.1038/nature10792
[60] Latka, I., Dochow, S., Krafft, C., Dietzek, B. & Popp, J. Fiber optic probes for linear and nonlinear Raman applications—current trends and future development. Laser Photon. Rev. 7, 698–731 (2013). doi: 10.1002/lpor.201200049
[61] Lombardini, A. et al. High-resolution multimodal flexible coherent Raman endoscope. Light. Sci. Appl. 7, 10 (2018). doi: 10.1038/s41377-018-0003-3
[62] Lu, F. K. et al. Label-free DNA imaging in vivo with stimulated Raman scattering microscopy. Proc. Natl Acad. Sci. USA 112, 11624 (2015). doi: 10.1073/pnas.1515121112
[63] Huber, R., Wojtkowski, M. & Fujimoto, J. G. Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography. Opt. Express 14, 3225–3237 (2006). doi: 10.1364/OE.14.003225
[64] Runcorn, T. H. et al. Fiber-integrated frequency-doubling of a picosecond Raman laser to 560 nm. Opt. Express 23, 15728–15733 (2015). doi: 10.1364/OE.23.015728
[65] Pologruto, T. A., Sabatini, B. L. & Svoboda, K. ScanImage: flexible software for operating laser scanning microscopes. Biomed. Eng. Online 2, 13 (2003). doi: 10.1186/1475-925X-2-13