[1] |
Upatnieks, J. & Lewis, R. W. Noise suppression in coherent Imaging. Appl. Opt. 12, 2161–2166 (1973). doi: 10.1364/AO.12.002161 |
[2] |
Goodman, J. W. Speckle Phenomena in Optics: Theory and Applications (Roberts and Company Publishers, Greenwood Village, CO, 2006). |
[3] |
Osten, W. et al. Recent advances in digital holography [Invited]. Appl. Opt. 53, G44–G63 (2014). |
[4] |
Nehmetallah, G. & Banerjee, P. P. Applications of digital and analog holography in three-dimensional imaging. Adv. Opt. Photonics 4, 472–553 (2012). doi: 10.1364/AOP.4.000472 |
[5] |
Kreis, T. Application of digital holography for nondestructive testing and metrology: a review. IEEE Trans. Ind. Inform. 12, 240–247 (2016). doi: 10.1109/TII.2015.2482900 |
[6] |
Memmolo, P. et al. Breakthroughs in photonics 2013: holographic imaging. IEEE Photon J. 6, 701106 (2014). |
[7] |
Schnars, U. & Jüptner, W. Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer-Verlag, Berlin, Heidelberg, 2004). |
[8] |
Yaroslavsky, L Digital Holography and Digital Image Processing: Principles, Methods, Algorithms (Kluwer Academic Publishers: Boston, MA, 2004). |
[9] |
Picart, P. & Li, J. C. Digital Holography (ISTE-Wiley, London, 2012). |
[10] |
Picart, P. New Techniques in Digital Holography (ISTE-Wiley, London, 2015). |
[11] |
Grilli, S. et al. Whole optical wavefields reconstruction by digital holography. Opt. Express 9, 294–302 (2001). doi: 10.1364/OE.9.000294 |
[12] |
Ferraro, P., Wax, A. & Zalevsky, Z. Coherent Light Microscopy: Imaging and Quantitative Phase Analysis (Springer, Berlin, Heidelberg, 2011). |
[13] |
Miccio, L., Memmolo, P., Merola, F., Netti, P. A. & Ferraro, P. Red blood cell as an adaptive optofluidic microlens. Nat. Common 6, 6502 (2015). doi: 10.1038/ncomms7502 |
[14] |
Choi, W. et al. Tomographic phase microscopy. Nat. Methods 4, 717–719 (2007). doi: 10.1038/nmeth1078 |
[15] |
Merola, F. et al. Tomographic flow cytometry by digital holography. Light Sci. Appl. 6, e16241 (2017). |
[16] |
Cotte, Y. et al. Marker-free phase nanoscopy. Nat. Photonics 7, 113–117 (2013). doi: 10.1038/nphoton.2012.329 |
[17] |
Shaked, N. T., Zalevsky, Z. & Satterwhite, L. L. Biomedical Optical Phase Microscopy and Nanoscopy (Academic Press, Oxford, 2012). |
[18] |
Wu, J. G., Zheng, G. A. & Lee, L. M. Optical imaging techniques in microfluidics and their applications. Lab. Chip 12, 3566–3575 (2012). doi: 10.1039/c2lc40517b |
[19] |
Merola, F. et al. Diagnostic tools for lab-on-chip applications based on coherent imaging microscopy. Proc. IEEE 103, 192–204 (2015). doi: 10.1109/JPROC.2014.2375374 |
[20] |
Psaltis, D., Quake, S. R. & Yang, C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381–386 (2006). doi: 10.1038/nature05060 |
[21] |
Bishara, W., Zhu, H. Y. & Ozcan, A. Holographic opto-fluidic microscopy. Opt. Express 18, 27499–27510 (2010). doi: 10.1364/OE.18.027499 |
[22] |
Memmolo, P. et al. Recent advances in holographic 3D particle tracking. Adv. Opt. Photonics 7, 713–755 (2015). doi: 10.1364/AOP.7.000713 |
[23] |
Yu, X., Hong, J., Liu, C. G. & Kim, M. K. Review of digital holographic microscopy for three-dimensional profiling and tracking. Opt. Eng. 53, 112306 (2014). doi: 10.1117/1.OE.53.11.112306 |
[24] |
Frauel, Y., Naughton, T. J., Matoba, O., Tajahuerce, E. & Javidi, B. Three-dimensional imaging and processing using computational holographic imaging. Proc. IEEE 94, 636–653 (2006). doi: 10.1109/JPROC.2006.870704 |
[25] |
Memmolo, P., Bianco, V., Paturzo, M. & Ferraro, P. Numerical manipulation of digital holograms for 3-D imaging and display: an overview. Proc. IEEE 105, 892–905 (2017). doi: 10.1109/JPROC.2016.2617892 |
[26] |
Poon, T. C. Digital Holography and Three-Dimensional Display: Principles and Applications (Springer, Boston, 2006). |
[27] |
Locatelli, M. et al. Imaging live humans through smoke and flames using far-infrared digital holography. Opt. Express 21, 5379–5390 (2013). doi: 10.1364/OE.21.005379 |
[28] |
Chen, W., Javidi, B. & Chen, X. D. Advances in optical security systems. Adv. Opt. Photonics 6, 120–155 (2014). doi: 10.1364/AOP.6.000120 |
[29] |
Memmolo, P. et al. Automatic frames extraction and visualization from noisy fringe sequences for data recovering in a portable digital speckle pattern interferometer for NDI. J. Disp. Technol. 11, 417–422 (2015). doi: 10.1109/JDT.2015.2405972 |
[30] |
Rivenson, Y., Stern, A. & Javidi, B. Overview of compressive sensing techniques applied in holography [Invited]. Appl. Opt. 52, A423–A432 (2013). |
[31] |
Rivenson, Y., Shalev, M. A. & Zalevsky, Z. Compressive Fresnel holography approach for high-resolution viewpoint inference. Opt. Lett. 40, 5606–5609 (2015). doi: 10.1364/OL.40.005606 |
[32] |
Bianco, V. et al. Quasi noise-free digital holography. Light Sci. Appl. 5, e16142 (2016). |
[33] |
Bianco, V., Memmolo, P., Paturzo, M. & Ferraro, P. On-speckle suppression in IR digital holography. Opt. Lett. 41, 5226–5229 (2016). doi: 10.1364/OL.41.005226 |
[34] |
Matrecano, M. et al. Improving holographic reconstruction by automatic Butterworth filtering for microelectromechanical systems characterization. Appl. Opt. 54, 3428–3432 (2015). doi: 10.1364/AO.54.003428 |
[35] |
Memmolo, P. et al. Encoding multiple holograms for speckle-noise reduction in optical display. Opt. Express 22, 25768–25775 (2014). doi: 10.1364/OE.22.025768 |
[36] |
Leo, M. et al. Multilevel bidimensional empirical mode decomposition: a new speckle reduction method in digital holography. Opt. Eng. 53, 112314 (2014). doi: 10.1117/1.OE.53.11.112314 |
[37] |
Leo, M. et al. Automatic digital hologram denoising by spatiotemporal analysis of pixel-wise statistics. J. Disp. Technol. 9, 904–909 (2013). doi: 10.1109/JDT.2013.2268936 |
[38] |
Memmolo, P. et al. Quantitative phase maps denoising of long holographic sequences by using SPADEDH algorithm. Appl. Opt. 52, 1453–1460 (2013). doi: 10.1364/AO.52.001453 |
[39] |
Bianco, V. et al. Random resampling masks: a non-Bayesian one-shot strategy for noise reduction in digital holography. Opt. Lett. 38, 619–621 (2013). doi: 10.1364/OL.38.000619 |
[40] |
Memmolo, P. et al. SPADEDH: a sparsity-based denoising method of digital holograms without knowing the noise statistics. Opt. Express 20, 17250–17257 (2012). doi: 10.1364/OE.20.017250 |
[41] |
Maycock, J. et al. Reduction of speckle in digital holography by discrete Fourier filtering. J. Opt. Soc. Am. A 24, 1617–1622 (2007). doi: 10.1364/JOSAA.24.001617 |
[42] |
Jiang, H. Z., Zhao, J. L. & Di, J. L. Digital color holographic recording and reconstruction using synthetic aperture and multiple reference waves. Opt. Common 285, 3046–3049 (2012). doi: 10.1016/j.optcom.2012.02.076 |
[43] |
Kuratomi, Y. et al. Speckle reduction mechanism in laser rear projection displays using a small moving diffuser. J. Opt. Soc. Am. A 27, 1812–1817 (2010). doi: 10.1364/JOSAA.27.001812 |
[44] |
Shin, S. H. & Javidi, B. Speckle-reduced three-dimensional volume holographic display by use of integral imaging. Appl. Opt. 41, 2644–2649 (2002). doi: 10.1364/AO.41.002644 |
[45] |
Bertaux, N., Frauel, Y., Réfrégier, P. & Javidi, B. Speckle removal using a maximum-likelihood technique with isoline gray-level regularization. J. Opt. Soc. Am. A 21, 2283–2291 (2004). doi: 10.1364/JOSAA.21.002283 |
[46] |
Picart, P., Tankam, P. & Song, Q. H. Experimental and theoretical investigation of the pixel saturation effect in digital holography. J. Opt. Soc. Am. A 28, 1262–1275 (2011). doi: 10.1364/JOSAA.28.001262 |
[47] |
Montresor, S. & Picart, P. Quantitative appraisal for noise reduction in digital holographic phase imaging. Opt. Express 24, 14322–14343 (2016). doi: 10.1364/OE.24.014322 |
[48] |
Poittevin, J., Picart, P., Gautier, F. & Pezerat, C. Quality assessment of combined quantization-shot-noise-induced decorrelation noise in high-speed digital holographic metrology. Opt. Express 23, 30917–30932 (2015). doi: 10.1364/OE.23.030917 |
[49] |
Cai, X. O. Reduction of speckle noise in the reconstructed image of digital holography. Opt. Int. J. Light Electron Opt. 121, 394–399 (2010). doi: 10.1016/j.ijleo.2008.07.026 |
[50] |
Garcia-Sucerquia, J. Noise reduction in digital lensless holographic microscopy by engineering the light from a light-emitting diode. Appl. Opt. 52, A232–A239 (2013). |
[51] |
Redding, B., Choma, M. A. & Cao, H. Speckle-free laser imaging using random laser illumination. Nat. Photonics 6, 355–359 (2012). doi: 10.1038/nphoton.2012.90 |
[52] |
Nomura, T., Okamura, M., Nitanai, E. & Numata, T. Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths. Appl. Opt. 47, D38–D43 (2008). |
[53] |
Pan, F., Xiao, W., Liu, S. & Rong, L. Coherent noise reduction in digital holographic microscopy by laterally shifting camera. Opt. Common 292, 68–72 (2013). doi: 10.1016/j.optcom.2012.11.091 |
[54] |
Pan, F. et al. Coherent noise reduction in digital holographic phase contrast microscopy by slightly shifting object. Opt. Express 19, 3862–3869 (2011). doi: 10.1364/OE.19.003862 |
[55] |
Quan, C. G., Kang, X. & Tay, C. J. Speckle noise reduction in digital holography by multiple holograms. Opt. Eng. 46, 115801 (2007). doi: 10.1117/1.2802060 |
[56] |
Garcia-Sucerquia, J., Ramírez, J. H. & Castaneda, R. Incoherent recovering of the spatial resolution in digital holography. Opt. Commun. 260, 62–67 (2006). doi: 10.1016/j.optcom.2005.10.003 |
[57] |
Baumbach, T., Kolenović, E., Kebbel, V. & Jüptner, W. Improvement of accuracy in digital holography by use of multiple holograms. Appl. Opt. 45, 6077–6085 (2006). doi: 10.1364/AO.45.006077 |
[58] |
Claus, D., Iliescu, D., Timmerman, B. H. & Bryanston-Cross, P. J. Resolution improvement in digital holography: comparison between synthetic aperture method and spatial averaging method. Proc. SPIE 8001, 80010Z (2011). |
[59] |
Frost, V. S., Stiles, J. A., Shanmugan, K. S. & Holtzman, J. C. A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-4, 157–166 (1982). |
[60] |
Uzan, A., Rivenson, Y. & Stern, A. Speckle denoising in digital holography by nonlocal means filtering. Appl. Opt. 52, A195–A200 (2013). |
[61] |
Hincapie, D., Herrera-Ramírez, J. & Garcia-Sucerquia, J. Single-shot speckle reduction in numerical reconstruction of digitally recorded holograms. Opt. Lett. 40, 1623–1626 (2015). doi: 10.1364/OL.40.001623 |
[62] |
Fukuoka, T., Mori, Y. & Nomura, T. Speckle reduction by spatial-domain mask in digital holography. J. Disp. Technol. 12, 315–322 (2016). doi: 10.1109/JDT.2015.2479646 |
[63] |
Haouat, M., Garcia-Sucerquia, J., Kellou, A. & Picart, P. Reduction of speckle noise in holographic images using spatial jittering in numerical reconstructions. Opt. Lett. 42, 1047–1050 (2017). doi: 10.1364/OL.42.001047 |
[64] |
Lam, E. Y., Zhang, X., Vo, H., Poon, T. C. & Indebetouw, G. Three-dimensional microscopy and sectional image reconstruction using optical scanning holography. Appl. Opt. 48, H113–H119 (2009). |
[65] |
Sotthivirat, S. & Fessler, J. A. Penalized-likelihood image reconstruction for digital holography. J. Opt. Soc. Am. A 21, 737–750 (2004). doi: 10.1364/JOSAA.21.000737 |
[66] |
Katz, B., Wulich, D. & Rosen, J. Optimal noise suppression in Fresnel incoherent correlation holography (FINCH) configured for maximum imaging resolution. Appl. Opt. 49, 5757–5763 (2010). doi: 10.1364/AO.49.005757 |
[67] |
Rosen, J. & Brooker, G. Fluorescence incoherent color holography. Opt. Express 15, 2244–2250 (2007). doi: 10.1364/OE.15.002244 |
[68] |
Chen, G. H. & Li, Q. Markov chain Monte Carlo sampling based terahertz holography image denoising. Appl. Opt. 54, 4345–4351 (2015). doi: 10.1364/AO.54.004345 |
[69] |
Kubota, S. & Goodman, J. W. Very efficient speckle contrast reduction realized by moving diffuser device. Appl. Opt. 49, 4385–4391 (2010). doi: 10.1364/AO.49.004385 |
[70] |
Peled, I., Zenou, M., Greenberg, B. & Kotler, Z. MEMS based speckle reduction obtain by angle diversity for fast imaging. In Proc. 2009 and 2009 Conference on Quantum electronics and Laser Science Conference Lasers and Electro-Optics 44 (IEEE, Baltimore, MD, 2009). |
[71] |
Amako, J., Miura, H. & Sonehara, T. Speckle-noise reduction on kinoform reconstruction using a phase-only spatial light modulator. Appl. Opt. 34, 3165–3171 (1995). doi: 10.1364/AO.34.003165 |
[72] |
Brozeit, A., Burke, J., Helmers, H., Sagehorn, H. & Schuh, R. Noise reduction in electronic speckle pattern interferometry fringes by merging orthogonally polarised speckle fields. Opt. Laser Technol. 30, 325–329 (1998). doi: 10.1016/S0030-3992(98)00060-7 |
[73] |
Rong, L., Xiao, W., Pan, F., Liu, S. & Li, R. Speckle noise reduction in digital holography by use of multiple polarization holograms. Chin. Opt. Lett. 8, 653–655 (2010). doi: 10.3788/COL20100807.0653 |
[74] |
Yu, F. T. S. & Wang, E. Y. Speckle reduction in holography by means of random spatial sampling. Appl. Opt. 12, 1656–1659 (1973). doi: 10.1364/AO.12.001656 |
[75] |
Matsumura, M. Speckle noise reduction by random phase shifters. Appl. Opt. 14, 660–665 (1975). doi: 10.1364/AO.14.000660 |
[76] |
Abolhassani, M. & Rostami, Y. Speckle noise reduction by division and digital processing of a hologram. Opt. Int. J. Light Electron Opt. 123, 937–939 (2012). doi: 10.1016/j.ijleo.2011.06.060 |
[77] |
Mills, G. A. & Yamaguchi, I. Effects of quantization in phase-shifting digital holography. Appl. Opt. 44, 1216–1225 (2005). doi: 10.1364/AO.44.001216 |
[78] |
Pandey, N. & Hennelly, B. Quantization noise and its reduction in lensless Fourier digital holography. Appl. Opt. 50, B58–B70 (2011). |
[79] |
Stangner, T., Zhang, H. Q., Dahlberg, T., Wiklund, K. & Andersson, M. Step-by-step guide to reduce spatial coherence of laser light using a rotating ground glass diffuser. Appl. Opt. 56, 5427–5435 (2017). doi: 10.1364/AO.56.005427 |
[80] |
Tu, S. Y., Lin, H. Y. & Lin, M. C. Efficient speckle reduction for a laser illuminating on a micro-vibrated paper screen. Appl. Opt. 53, E38–E46 (2014). |
[81] |
Lapchuk, A. et al. Very efficient speckle suppression in the entire visible range by one two-sided diffractive optical element. Appl. Opt. 56, 1481–1488 (2017). doi: 10.1364/AO.56.001481 |
[82] |
Yang, X., Pu, Y. & Psaltis, D. Imaging blood cells through scattering biological tissue using speckle scanning microscopy. Opt. Express 22, 3405–3413 (2014). doi: 10.1364/OE.22.003405 |
[83] |
Faridian, A., Pedrini, G. & Osten, W. High-contrast multilayer imaging of biological organisms through dark-field digital refocusing. J. Biomed. Opt. 18, 086009 (2013). doi: 10.1117/1.JBO.18.8.086009 |
[84] |
Agour, M., Klattenhoff, R., Falldorf, C. & Bergmann, R. B. Spatial multiplexing digital holography for speckle noise reduction in single-shot holographic two-wavelength contouring. Opt. Eng. 56, 124101 (2017). |
[85] |
Zhang, B. et al. Mitigation of nonlinear interference noise introduced by cross-phase modulation in the dual-polarization 16 QAM wavelength-division multiplexing coherent optical system. Opt. Eng. 56, 056109 (2017). doi: 10.1117/1.OE.56.5.056109 |
[86] |
Lesaffre, M., Verrier, N. & Gross, M. Noise and signal scaling factors in digital holography in weak illumination: relationship with shot noise. Appl. Opt. 52, A81–A91 (2013). |
[87] |
Gross, M., Atlan, M. & Absil, E. Noise and aliases in off-axis and phase-shifting holography. Appl. Opt. 47, 1757–1766 (2008). doi: 10.1364/AO.47.001757 |
[88] |
Gross, M. & Atlan, M. Digital holography with ultimate sensitivity. Opt. Lett. 32, 909–911 (2007). doi: 10.1364/OL.32.000909 |
[89] |
Verpillat, F., Joud, F., Atlan, M. & Gross, M. Digital holography at shot noise level. J. Disp. Technol. 6, 455–464 (2010). doi: 10.1109/JDT.2010.2044366 |
[90] |
Tur, M., Chin, K. C. & Goodman, J. W. When is speckle noise multiplicative? Appl. Opt. 21, 1157–1159 (1982). doi: 10.1364/AO.21.001157 |
[91] |
Dainty, J. C. Laser Speckle and Related Phenomena 2 edn (Springer-Verlag, Berlin, 1984). |
[92] |
Goodman, J. W. Statistical Optics (Wiley, New York, 1985). |
[93] |
Jones, R. & Wykes, C. Holographic and Speckle Interferometry 2 edn (Cambridge University Press, Cambridge, 1989). |
[94] |
Picart, P. & Leval, J. General theoretical formulation of image formation in digital Fresnel holography. J. Opt. Soc. Am. A 25, 1744–1761 (2008). doi: 10.1364/JOSAA.25.001744 |
[95] |
Kreis, T. M. Frequency analysis of digital holography. Opt. Eng. 41, 771–778 (2002). doi: 10.1117/1.1458551 |
[96] |
Kreis, T. M. Frequency analysis of digital holography with reconstruction by convolution. Opt. Eng. 41, 1829–1839 (2002). doi: 10.1117/1.1489678 |
[97] |
Bioucas-Dias, J. M. & Valadão, G. Phase unwrapping via graph cuts. IEEE Trans. Image Process. 16, 698–709 (2007). doi: 10.1109/TIP.2006.888351 |
[98] |
Ghiglia, D. C. & Pritt, M. D. Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, New York, 1998). |
[99] |
Yamaguchi, I., Yamamoto, A. & Kuwamura, S. Speckle decorrelation in surface profilometry by wavelength scanning interferometry. Appl. Opt. 37, 6721–6728 (1998). doi: 10.1364/AO.37.006721 |
[100] |
Poittevin, J., Gautier, F., Pézerat, C. & Picart, P. High-speed holographic metrology: principle, limitations, and application to vibroacoustics of structures. Opt. Eng. 55, 121717 (2016). doi: 10.1117/1.OE.55.12.121717 |
[101] |
Picart, P., Montresor, S., Sakharuk, O. & Muravsky, L. Refocus criterion based on maximization of the coherence factor in digital three-wavelength holographic interferometry. Opt. Lett. 42, 275–278 (2017). doi: 10.1364/OL.42.000275 |
[102] |
Aebischer, H. A. & Waldner, S. A simple and effective method for filtering speckle-interferometric phase fringe patterns. Opt. Commun. 162, 205–210 (1999). doi: 10.1016/S0030-4018(99)00116-9 |
[103] |
Kemao, Q., Soon, S. H. & Asundi, A. Smoothing filters in phase-shifting interferometry. Opt. Laser Technol. 35, 649–654 (2003). doi: 10.1016/S0030-3992(03)00113-0 |
[104] |
Poon, T. C., Wu, M. H., Shinoda, K. & Suzuki, T. Optical scanning holography. Proc. IEEE 84, 753–764 (1996). doi: 10.1109/5.488744 |
[105] |
Kim, Y. S. et al. Speckle-free digital holographic recording of a diffusely reflecting object. Opt. Express 21, 8183–8189 (2013). doi: 10.1364/OE.21.008183 |
[106] |
Kim, M. K. Full color natural light holographic camera. Opt. Express 21, 9636–9642 (2013). doi: 10.1364/OE.21.009636 |
[107] |
Nguyen, T. H., Edwards, C., Goddard, L. L. & Popescu, G. Quantitative phase imaging with partially coherent illumination. Opt. Lett. 39, 5511–5514 (2014). doi: 10.1364/OL.39.005511 |
[108] |
Dubois, F. & Yourassowsky, C. Full off-axis red-green-blue digital holographic microscope with LED illumination. Opt. Lett. 37, 2190–2192 (2012). doi: 10.1364/OL.37.002190 |
[109] |
Kim, M. et al. High-speed synthetic aperture microscopy for live cell imaging. Opt. Lett. 36, 148–150 (2011). doi: 10.1364/OL.36.000148 |
[110] |
Kang, S. et al. Imaging deep within a scattering medium using collective accumulation of single-scattered waves. Nat. Photonics 9, 253–258 (2015). doi: 10.1038/nphoton.2015.24 |
[111] |
Kim, T. et al. White-light diffraction tomography of unlabelled live cells. Nat. Photonics 8, 256–263 (2014). doi: 10.1038/nphoton.2013.350 |
[112] |
Redding, B., Choma, M. A. & Cao, H. Spatial coherence of random laser emission. Opt. Lett. 36, 3404–3406 (2011). doi: 10.1364/OL.36.003404 |
[113] |
Choi, Y., Yang, T. D., Lee, K. J. & Choi, W. Full-field and single-shot quantitative phase microscopy using dynamic speckle illumination. Opt. Lett. 36, 2465–2467 (2011). doi: 10.1364/OL.36.002465 |
[114] |
Bianco, V. et al. Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions. Opt. Lett. 37, 4212–4214 (2012). doi: 10.1364/OL.37.004212 |
[115] |
Bianco, V. et al. Clear microfluidics imaging through flowing blood by digital holography. IEEE J. Sel. Top. Quant. Electron 20, 6801507 (2014). |
[116] |
Bianco, V. et al. Imaging adherent cells in the microfluidic channel hidden by flowing RBCs as occluding objects by a holographic method. Lab. Chip 14, 2499–2504 (2014). doi: 10.1039/c4lc00290c |
[117] |
Bianco, V., Marchesano, V., Finizio, A., Paturzo, M. & Ferraro, P. Self-propelling bacteria mimic coherent light decorrelation. Opt. Express 23, 9388–9396 (2015). doi: 10.1364/OE.23.009388 |
[118] |
Redding, B., Allen, G., Dufresne, E. R. & Cao, H. Low-loss high-speed speckle reduction using a colloidal dispersion. Appl. Opt. 52, 1168–1172 (2013). doi: 10.1364/AO.52.001168 |
[119] |
Bennet, M., Gur, D., Yoon, J., Park, Y. K. & Faivre, D. A bacteria-based remotely tunable photonic device. Adv. Opt. Mater. 5, 1600617 (2017). doi: 10.1002/adom.201600617 |
[120] |
Gonzales, R. C. & Woods, R. E. Digital Image Processing 3 edn (Prentice Hall, Upper Saddle River, 2008). |
[121] |
Lee, J. S. Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern. Anal. Mach. Intell. PAMI-2, 165–168 (1980). |
[122] |
Mallat, S. A Wavelet Tour of Signal Processing 2 edn (Academic Press, New York, 1999). |
[123] |
Donoho, D. L. De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41, 613–627 (1995). doi: 10.1109/18.382009 |
[124] |
Xie, H., Pierce, L. E. & Ulaby, F. T. SAR speckle reduction using wavelet denoising and Markov random field modeling. IEEE Trans. Geosci. Remote Sens. 40, 2196–2212 (2002). doi: 10.1109/TGRS.2002.802473 |
[125] |
Starck, J. L., Candès, E. J. & Donoho, D. L. The curvelet transform for image denoising. IEEE Trans. Image Proc. 11, 670–684 (2002). doi: 10.1109/TIP.2002.1014998 |
[126] |
Do, M. N. & Vetterli, M. The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Proc. 14, 2091–2106 (2005). doi: 10.1109/TIP.2005.859376 |
[127] |
Frederico, A. & Kaufmann, G. H. Denoising in digital speckle pattern interferometry using wave atoms. Opt. Lett. 32, 1232–1234 (2007). doi: 10.1364/OL.32.001232 |
[128] |
Kaufmann, G. H. & Galizzi, G. E. Speckle noise reduction in television holography fringes using wavelet thresholding. Opt. Eng. 35, 9–14 (1996). doi: 10.1117/1.600874 |
[129] |
Shulev, A. A., Gotchev, A., Foi, A. & Roussev, I. R. Threshold selection in transform-domain denoising of speckle pattern fringes. In Proc. SPIE 6252, Holography 2005: International Conference on Holography, Optical Recording, and Processing of Information 625220 (SPIE, Varna, 2006). |
[130] |
Barj, E. M., Afifi, M., Idrissi, A. A., Nassim, K. & Rachafi, S. Speckle correlation fringes denoising using stationary wavelet transform. Appl. Wavel. Phase Eval. Tech. Opt. Laser Technol. 38, 506–511 (2006). |
[131] |
Bang, L. T., Li, W. N., Piao, M. L., Alam, M. A. & Kim, N. Noise reduction in digital hologram using wavelet transforms and smooth filter for three-dimensional display. IEEE Photon J. 5, 6800414 (2013). doi: 10.1109/JPHOT.2013.2265979 |
[132] |
Buades, A., Coll, B. & Morel, J. M. A review of image denoising algorithms, with a new one. Multiscale Model Simul. 4, 490–530 (2005). doi: 10.1137/040616024 |
[133] |
Buades, A., Coll, B. & Morel, J. M. A non-local algorithm for image denoising. In Proc. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 60–65 (IEEE, San Diego, CA, 2005). |
[134] |
Deledalle, C., Denis, L. & Tupin, F. NL-InSAR: nonlocal interferogram estimation. IEEE Trans. Geosci. Remote Sens. 49, 1441–1452 (2011). doi: 10.1109/TGRS.2010.2076376 |
[135] |
Coupé, P., Hellier, P., Kervrann, P. & Barillot, C. Nonlocal means-based speckle filtering for ultrasound images. IEEE Trans. Image Proc. 18, 2221–2229 (2009). doi: 10.1109/TIP.2009.2024064 |
[136] |
Dabov, K., Foi, A., Katkovnik, V. & Egiazarian, K. Image denoising with block-matching and 3D filtering. In Proc. SPIE 6064, Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning 606414 (SPIE, San Jose, CA, 2006). |
[137] |
Dabov, K., Foi, A., Katkovnik, V. & Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Proc. 16, 2080–2095 (2007). doi: 10.1109/TIP.2007.901238 |
[138] |
Katkovnik, V., Foi, A., Egiazarian, K. & Astola, J. From local kernel to nonlocal multiple-model image denoising. Int. J. Comput. Vis. 86, 1–32 (2010). doi: 10.1007/s11263-009-0272-7 |
[139] |
Kemao, Q. Windowed Fourier transform for fringe pattern analysis. Appl. Opt. 43, 2695–2702 (2004). doi: 10.1364/AO.43.002695 |
[140] |
Huang, L., Kemao, Q., Pan, B. & Asundi, A. K. Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry. Opt. Lasers Eng. 48, 141–148 (2010). doi: 10.1016/j.optlaseng.2009.04.003 |
[141] |
Kemao, Q., Nam, L. T. H., Feng, L. & Soon, S. H. Comparative analysis on some filters for wrapped phase maps. Appl. Opt. 46, 7412–7418 (2007). doi: 10.1364/AO.46.007412 |
[142] |
Kemao, Q. On window size selection in the windowed Fourier ridges algorithm. Opt. Lasers Eng. 45, 1186–1192 (2007). doi: 10.1016/j.optlaseng.2006.11.005 |
[143] |
Kemao, Q. Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations. Opt. Lasers Eng. 45, 304–317 (2007). doi: 10.1016/j.optlaseng.2005.10.012 |
[144] |
Yatabe, K. & Oikawa, Y. Convex optimization-based windowed Fourier filtering with multiple windows for wrapped-phase denoising. Appl. Opt. 55, 4632–4641 (2016). doi: 10.1364/AO.55.004632 |
[145] |
Perona, P. & Malik, J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pat. Anal. Mach. Intell. 12, 629–639 (1990). doi: 10.1109/34.56205 |
[146] |
Gerig, G., Kubler, O., Kikinis, R. & Jolesz, F. A. Nonlinear anisotropic filtering of MRIdata. IEEE Trans. Med. Imag. 11, 221–232 (1992). doi: 10.1109/42.141646 |
[147] |
Shamsoddini, A. & Trinder, J. C. Image texture preservation in speckle noise suppression. In ISPRS TC VII Symposium 100 Years ISPRS (ISPRS, Vienna, 2010). |
[148] |
Montrésor, S., Picart, P., Sakharuk, O. & Muravsky, L. Error analysis for noise reduction in 3D deformation measurement with digital color holography. J. Opt. Soc. Am. B 34, B9–B15 (2017). |
[149] |
Ribak, E., Roddier, C., Roddier, F. & Breckinridge, J. B. Signal-to-noise limitations in white light holography. Appl. Opt. 27, 1183–1186 (1988). doi: 10.1364/AO.27.001183 |
[150] |
Katkovnik, V. & Egiazarian, K. Sparse phase imaging based on complex domain nonlocal BM3D techniques. Digit. Signal Process. 63, 72–85 (2017). doi: 10.1016/j.dsp.2017.01.002 |
[151] |
Katkovnik, V., Ponomarenko, M. & Egiazarian, K. Sparse approximations in complex domain based on BM3D modeling. Signal Process. 141, 96–108 (2017). doi: 10.1016/j.sigpro.2017.05.032 |