[1] Upatnieks, J. & Lewis, R. W. Noise suppression in coherent Imaging. Appl. Opt. 12, 2161–2166 (1973). doi: 10.1364/AO.12.002161
[2] Goodman, J. W. Speckle Phenomena in Optics: Theory and Applications (Roberts and Company Publishers, Greenwood Village, CO, 2006).
[3] Osten, W. et al. Recent advances in digital holography [Invited]. Appl. Opt. 53, G44–G63 (2014).
[4] Nehmetallah, G. & Banerjee, P. P. Applications of digital and analog holography in three-dimensional imaging. Adv. Opt. Photonics 4, 472–553 (2012). doi: 10.1364/AOP.4.000472
[5] Kreis, T. Application of digital holography for nondestructive testing and metrology: a review. IEEE Trans. Ind. Inform. 12, 240–247 (2016). doi: 10.1109/TII.2015.2482900
[6] Memmolo, P. et al. Breakthroughs in photonics 2013: holographic imaging. IEEE Photon J. 6, 701106 (2014).
[7] Schnars, U. & Jüptner, W. Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer-Verlag, Berlin, Heidelberg, 2004).
[8] Yaroslavsky, L Digital Holography and Digital Image Processing: Principles, Methods, Algorithms (Kluwer Academic Publishers: Boston, MA, 2004).
[9] Picart, P. & Li, J. C. Digital Holography (ISTE-Wiley, London, 2012).
[10] Picart, P. New Techniques in Digital Holography (ISTE-Wiley, London, 2015).
[11] Grilli, S. et al. Whole optical wavefields reconstruction by digital holography. Opt. Express 9, 294–302 (2001). doi: 10.1364/OE.9.000294
[12] Ferraro, P., Wax, A. & Zalevsky, Z. Coherent Light Microscopy: Imaging and Quantitative Phase Analysis (Springer, Berlin, Heidelberg, 2011).
[13] Miccio, L., Memmolo, P., Merola, F., Netti, P. A. & Ferraro, P. Red blood cell as an adaptive optofluidic microlens. Nat. Common 6, 6502 (2015). doi: 10.1038/ncomms7502
[14] Choi, W. et al. Tomographic phase microscopy. Nat. Methods 4, 717–719 (2007). doi: 10.1038/nmeth1078
[15] Merola, F. et al. Tomographic flow cytometry by digital holography. Light Sci. Appl. 6, e16241 (2017).
[16] Cotte, Y. et al. Marker-free phase nanoscopy. Nat. Photonics 7, 113–117 (2013). doi: 10.1038/nphoton.2012.329
[17] Shaked, N. T., Zalevsky, Z. & Satterwhite, L. L. Biomedical Optical Phase Microscopy and Nanoscopy (Academic Press, Oxford, 2012).
[18] Wu, J. G., Zheng, G. A. & Lee, L. M. Optical imaging techniques in microfluidics and their applications. Lab. Chip 12, 3566–3575 (2012). doi: 10.1039/c2lc40517b
[19] Merola, F. et al. Diagnostic tools for lab-on-chip applications based on coherent imaging microscopy. Proc. IEEE 103, 192–204 (2015). doi: 10.1109/JPROC.2014.2375374
[20] Psaltis, D., Quake, S. R. & Yang, C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381–386 (2006). doi: 10.1038/nature05060
[21] Bishara, W., Zhu, H. Y. & Ozcan, A. Holographic opto-fluidic microscopy. Opt. Express 18, 27499–27510 (2010). doi: 10.1364/OE.18.027499
[22] Memmolo, P. et al. Recent advances in holographic 3D particle tracking. Adv. Opt. Photonics 7, 713–755 (2015). doi: 10.1364/AOP.7.000713
[23] Yu, X., Hong, J., Liu, C. G. & Kim, M. K. Review of digital holographic microscopy for three-dimensional profiling and tracking. Opt. Eng. 53, 112306 (2014). doi: 10.1117/1.OE.53.11.112306
[24] Frauel, Y., Naughton, T. J., Matoba, O., Tajahuerce, E. & Javidi, B. Three-dimensional imaging and processing using computational holographic imaging. Proc. IEEE 94, 636–653 (2006). doi: 10.1109/JPROC.2006.870704
[25] Memmolo, P., Bianco, V., Paturzo, M. & Ferraro, P. Numerical manipulation of digital holograms for 3-D imaging and display: an overview. Proc. IEEE 105, 892–905 (2017). doi: 10.1109/JPROC.2016.2617892
[26] Poon, T. C. Digital Holography and Three-Dimensional Display: Principles and Applications (Springer, Boston, 2006).
[27] Locatelli, M. et al. Imaging live humans through smoke and flames using far-infrared digital holography. Opt. Express 21, 5379–5390 (2013). doi: 10.1364/OE.21.005379
[28] Chen, W., Javidi, B. & Chen, X. D. Advances in optical security systems. Adv. Opt. Photonics 6, 120–155 (2014). doi: 10.1364/AOP.6.000120
[29] Memmolo, P. et al. Automatic frames extraction and visualization from noisy fringe sequences for data recovering in a portable digital speckle pattern interferometer for NDI. J. Disp. Technol. 11, 417–422 (2015). doi: 10.1109/JDT.2015.2405972
[30] Rivenson, Y., Stern, A. & Javidi, B. Overview of compressive sensing techniques applied in holography [Invited]. Appl. Opt. 52, A423–A432 (2013).
[31] Rivenson, Y., Shalev, M. A. & Zalevsky, Z. Compressive Fresnel holography approach for high-resolution viewpoint inference. Opt. Lett. 40, 5606–5609 (2015). doi: 10.1364/OL.40.005606
[32] Bianco, V. et al. Quasi noise-free digital holography. Light Sci. Appl. 5, e16142 (2016).
[33] Bianco, V., Memmolo, P., Paturzo, M. & Ferraro, P. On-speckle suppression in IR digital holography. Opt. Lett. 41, 5226–5229 (2016). doi: 10.1364/OL.41.005226
[34] Matrecano, M. et al. Improving holographic reconstruction by automatic Butterworth filtering for microelectromechanical systems characterization. Appl. Opt. 54, 3428–3432 (2015). doi: 10.1364/AO.54.003428
[35] Memmolo, P. et al. Encoding multiple holograms for speckle-noise reduction in optical display. Opt. Express 22, 25768–25775 (2014). doi: 10.1364/OE.22.025768
[36] Leo, M. et al. Multilevel bidimensional empirical mode decomposition: a new speckle reduction method in digital holography. Opt. Eng. 53, 112314 (2014). doi: 10.1117/1.OE.53.11.112314
[37] Leo, M. et al. Automatic digital hologram denoising by spatiotemporal analysis of pixel-wise statistics. J. Disp. Technol. 9, 904–909 (2013). doi: 10.1109/JDT.2013.2268936
[38] Memmolo, P. et al. Quantitative phase maps denoising of long holographic sequences by using SPADEDH algorithm. Appl. Opt. 52, 1453–1460 (2013). doi: 10.1364/AO.52.001453
[39] Bianco, V. et al. Random resampling masks: a non-Bayesian one-shot strategy for noise reduction in digital holography. Opt. Lett. 38, 619–621 (2013). doi: 10.1364/OL.38.000619
[40] Memmolo, P. et al. SPADEDH: a sparsity-based denoising method of digital holograms without knowing the noise statistics. Opt. Express 20, 17250–17257 (2012). doi: 10.1364/OE.20.017250
[41] Maycock, J. et al. Reduction of speckle in digital holography by discrete Fourier filtering. J. Opt. Soc. Am. A 24, 1617–1622 (2007). doi: 10.1364/JOSAA.24.001617
[42] Jiang, H. Z., Zhao, J. L. & Di, J. L. Digital color holographic recording and reconstruction using synthetic aperture and multiple reference waves. Opt. Common 285, 3046–3049 (2012). doi: 10.1016/j.optcom.2012.02.076
[43] Kuratomi, Y. et al. Speckle reduction mechanism in laser rear projection displays using a small moving diffuser. J. Opt. Soc. Am. A 27, 1812–1817 (2010). doi: 10.1364/JOSAA.27.001812
[44] Shin, S. H. & Javidi, B. Speckle-reduced three-dimensional volume holographic display by use of integral imaging. Appl. Opt. 41, 2644–2649 (2002). doi: 10.1364/AO.41.002644
[45] Bertaux, N., Frauel, Y., Réfrégier, P. & Javidi, B. Speckle removal using a maximum-likelihood technique with isoline gray-level regularization. J. Opt. Soc. Am. A 21, 2283–2291 (2004). doi: 10.1364/JOSAA.21.002283
[46] Picart, P., Tankam, P. & Song, Q. H. Experimental and theoretical investigation of the pixel saturation effect in digital holography. J. Opt. Soc. Am. A 28, 1262–1275 (2011). doi: 10.1364/JOSAA.28.001262
[47] Montresor, S. & Picart, P. Quantitative appraisal for noise reduction in digital holographic phase imaging. Opt. Express 24, 14322–14343 (2016). doi: 10.1364/OE.24.014322
[48] Poittevin, J., Picart, P., Gautier, F. & Pezerat, C. Quality assessment of combined quantization-shot-noise-induced decorrelation noise in high-speed digital holographic metrology. Opt. Express 23, 30917–30932 (2015). doi: 10.1364/OE.23.030917
[49] Cai, X. O. Reduction of speckle noise in the reconstructed image of digital holography. Opt. Int. J. Light Electron Opt. 121, 394–399 (2010). doi: 10.1016/j.ijleo.2008.07.026
[50] Garcia-Sucerquia, J. Noise reduction in digital lensless holographic microscopy by engineering the light from a light-emitting diode. Appl. Opt. 52, A232–A239 (2013).
[51] Redding, B., Choma, M. A. & Cao, H. Speckle-free laser imaging using random laser illumination. Nat. Photonics 6, 355–359 (2012). doi: 10.1038/nphoton.2012.90
[52] Nomura, T., Okamura, M., Nitanai, E. & Numata, T. Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths. Appl. Opt. 47, D38–D43 (2008).
[53] Pan, F., Xiao, W., Liu, S. & Rong, L. Coherent noise reduction in digital holographic microscopy by laterally shifting camera. Opt. Common 292, 68–72 (2013). doi: 10.1016/j.optcom.2012.11.091
[54] Pan, F. et al. Coherent noise reduction in digital holographic phase contrast microscopy by slightly shifting object. Opt. Express 19, 3862–3869 (2011). doi: 10.1364/OE.19.003862
[55] Quan, C. G., Kang, X. & Tay, C. J. Speckle noise reduction in digital holography by multiple holograms. Opt. Eng. 46, 115801 (2007). doi: 10.1117/1.2802060
[56] Garcia-Sucerquia, J., Ramírez, J. H. & Castaneda, R. Incoherent recovering of the spatial resolution in digital holography. Opt. Commun. 260, 62–67 (2006). doi: 10.1016/j.optcom.2005.10.003
[57] Baumbach, T., Kolenović, E., Kebbel, V. & Jüptner, W. Improvement of accuracy in digital holography by use of multiple holograms. Appl. Opt. 45, 6077–6085 (2006). doi: 10.1364/AO.45.006077
[58] Claus, D., Iliescu, D., Timmerman, B. H. & Bryanston-Cross, P. J. Resolution improvement in digital holography: comparison between synthetic aperture method and spatial averaging method. Proc. SPIE 8001, 80010Z (2011).
[59] Frost, V. S., Stiles, J. A., Shanmugan, K. S. & Holtzman, J. C. A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-4, 157–166 (1982).
[60] Uzan, A., Rivenson, Y. & Stern, A. Speckle denoising in digital holography by nonlocal means filtering. Appl. Opt. 52, A195–A200 (2013).
[61] Hincapie, D., Herrera-Ramírez, J. & Garcia-Sucerquia, J. Single-shot speckle reduction in numerical reconstruction of digitally recorded holograms. Opt. Lett. 40, 1623–1626 (2015). doi: 10.1364/OL.40.001623
[62] Fukuoka, T., Mori, Y. & Nomura, T. Speckle reduction by spatial-domain mask in digital holography. J. Disp. Technol. 12, 315–322 (2016). doi: 10.1109/JDT.2015.2479646
[63] Haouat, M., Garcia-Sucerquia, J., Kellou, A. & Picart, P. Reduction of speckle noise in holographic images using spatial jittering in numerical reconstructions. Opt. Lett. 42, 1047–1050 (2017). doi: 10.1364/OL.42.001047
[64] Lam, E. Y., Zhang, X., Vo, H., Poon, T. C. & Indebetouw, G. Three-dimensional microscopy and sectional image reconstruction using optical scanning holography. Appl. Opt. 48, H113–H119 (2009).
[65] Sotthivirat, S. & Fessler, J. A. Penalized-likelihood image reconstruction for digital holography. J. Opt. Soc. Am. A 21, 737–750 (2004). doi: 10.1364/JOSAA.21.000737
[66] Katz, B., Wulich, D. & Rosen, J. Optimal noise suppression in Fresnel incoherent correlation holography (FINCH) configured for maximum imaging resolution. Appl. Opt. 49, 5757–5763 (2010). doi: 10.1364/AO.49.005757
[67] Rosen, J. & Brooker, G. Fluorescence incoherent color holography. Opt. Express 15, 2244–2250 (2007). doi: 10.1364/OE.15.002244
[68] Chen, G. H. & Li, Q. Markov chain Monte Carlo sampling based terahertz holography image denoising. Appl. Opt. 54, 4345–4351 (2015). doi: 10.1364/AO.54.004345
[69] Kubota, S. & Goodman, J. W. Very efficient speckle contrast reduction realized by moving diffuser device. Appl. Opt. 49, 4385–4391 (2010). doi: 10.1364/AO.49.004385
[70] Peled, I., Zenou, M., Greenberg, B. & Kotler, Z. MEMS based speckle reduction obtain by angle diversity for fast imaging. In Proc. 2009 and 2009 Conference on Quantum electronics and Laser Science Conference Lasers and Electro-Optics 44 (IEEE, Baltimore, MD, 2009).
[71] Amako, J., Miura, H. & Sonehara, T. Speckle-noise reduction on kinoform reconstruction using a phase-only spatial light modulator. Appl. Opt. 34, 3165–3171 (1995). doi: 10.1364/AO.34.003165
[72] Brozeit, A., Burke, J., Helmers, H., Sagehorn, H. & Schuh, R. Noise reduction in electronic speckle pattern interferometry fringes by merging orthogonally polarised speckle fields. Opt. Laser Technol. 30, 325–329 (1998). doi: 10.1016/S0030-3992(98)00060-7
[73] Rong, L., Xiao, W., Pan, F., Liu, S. & Li, R. Speckle noise reduction in digital holography by use of multiple polarization holograms. Chin. Opt. Lett. 8, 653–655 (2010). doi: 10.3788/COL20100807.0653
[74] Yu, F. T. S. & Wang, E. Y. Speckle reduction in holography by means of random spatial sampling. Appl. Opt. 12, 1656–1659 (1973). doi: 10.1364/AO.12.001656
[75] Matsumura, M. Speckle noise reduction by random phase shifters. Appl. Opt. 14, 660–665 (1975). doi: 10.1364/AO.14.000660
[76] Abolhassani, M. & Rostami, Y. Speckle noise reduction by division and digital processing of a hologram. Opt. Int. J. Light Electron Opt. 123, 937–939 (2012). doi: 10.1016/j.ijleo.2011.06.060
[77] Mills, G. A. & Yamaguchi, I. Effects of quantization in phase-shifting digital holography. Appl. Opt. 44, 1216–1225 (2005). doi: 10.1364/AO.44.001216
[78] Pandey, N. & Hennelly, B. Quantization noise and its reduction in lensless Fourier digital holography. Appl. Opt. 50, B58–B70 (2011).
[79] Stangner, T., Zhang, H. Q., Dahlberg, T., Wiklund, K. & Andersson, M. Step-by-step guide to reduce spatial coherence of laser light using a rotating ground glass diffuser. Appl. Opt. 56, 5427–5435 (2017). doi: 10.1364/AO.56.005427
[80] Tu, S. Y., Lin, H. Y. & Lin, M. C. Efficient speckle reduction for a laser illuminating on a micro-vibrated paper screen. Appl. Opt. 53, E38–E46 (2014).
[81] Lapchuk, A. et al. Very efficient speckle suppression in the entire visible range by one two-sided diffractive optical element. Appl. Opt. 56, 1481–1488 (2017). doi: 10.1364/AO.56.001481
[82] Yang, X., Pu, Y. & Psaltis, D. Imaging blood cells through scattering biological tissue using speckle scanning microscopy. Opt. Express 22, 3405–3413 (2014). doi: 10.1364/OE.22.003405
[83] Faridian, A., Pedrini, G. & Osten, W. High-contrast multilayer imaging of biological organisms through dark-field digital refocusing. J. Biomed. Opt. 18, 086009 (2013). doi: 10.1117/1.JBO.18.8.086009
[84] Agour, M., Klattenhoff, R., Falldorf, C. & Bergmann, R. B. Spatial multiplexing digital holography for speckle noise reduction in single-shot holographic two-wavelength contouring. Opt. Eng. 56, 124101 (2017).
[85] Zhang, B. et al. Mitigation of nonlinear interference noise introduced by cross-phase modulation in the dual-polarization 16 QAM wavelength-division multiplexing coherent optical system. Opt. Eng. 56, 056109 (2017). doi: 10.1117/1.OE.56.5.056109
[86] Lesaffre, M., Verrier, N. & Gross, M. Noise and signal scaling factors in digital holography in weak illumination: relationship with shot noise. Appl. Opt. 52, A81–A91 (2013).
[87] Gross, M., Atlan, M. & Absil, E. Noise and aliases in off-axis and phase-shifting holography. Appl. Opt. 47, 1757–1766 (2008). doi: 10.1364/AO.47.001757
[88] Gross, M. & Atlan, M. Digital holography with ultimate sensitivity. Opt. Lett. 32, 909–911 (2007). doi: 10.1364/OL.32.000909
[89] Verpillat, F., Joud, F., Atlan, M. & Gross, M. Digital holography at shot noise level. J. Disp. Technol. 6, 455–464 (2010). doi: 10.1109/JDT.2010.2044366
[90] Tur, M., Chin, K. C. & Goodman, J. W. When is speckle noise multiplicative? Appl. Opt. 21, 1157–1159 (1982). doi: 10.1364/AO.21.001157
[91] Dainty, J. C. Laser Speckle and Related Phenomena 2 edn (Springer-Verlag, Berlin, 1984).
[92] Goodman, J. W. Statistical Optics (Wiley, New York, 1985).
[93] Jones, R. & Wykes, C. Holographic and Speckle Interferometry 2 edn (Cambridge University Press, Cambridge, 1989).
[94] Picart, P. & Leval, J. General theoretical formulation of image formation in digital Fresnel holography. J. Opt. Soc. Am. A 25, 1744–1761 (2008). doi: 10.1364/JOSAA.25.001744
[95] Kreis, T. M. Frequency analysis of digital holography. Opt. Eng. 41, 771–778 (2002). doi: 10.1117/1.1458551
[96] Kreis, T. M. Frequency analysis of digital holography with reconstruction by convolution. Opt. Eng. 41, 1829–1839 (2002). doi: 10.1117/1.1489678
[97] Bioucas-Dias, J. M. & Valadão, G. Phase unwrapping via graph cuts. IEEE Trans. Image Process. 16, 698–709 (2007). doi: 10.1109/TIP.2006.888351
[98] Ghiglia, D. C. & Pritt, M. D. Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, New York, 1998).
[99] Yamaguchi, I., Yamamoto, A. & Kuwamura, S. Speckle decorrelation in surface profilometry by wavelength scanning interferometry. Appl. Opt. 37, 6721–6728 (1998). doi: 10.1364/AO.37.006721
[100] Poittevin, J., Gautier, F., Pézerat, C. & Picart, P. High-speed holographic metrology: principle, limitations, and application to vibroacoustics of structures. Opt. Eng. 55, 121717 (2016). doi: 10.1117/1.OE.55.12.121717
[101] Picart, P., Montresor, S., Sakharuk, O. & Muravsky, L. Refocus criterion based on maximization of the coherence factor in digital three-wavelength holographic interferometry. Opt. Lett. 42, 275–278 (2017). doi: 10.1364/OL.42.000275
[102] Aebischer, H. A. & Waldner, S. A simple and effective method for filtering speckle-interferometric phase fringe patterns. Opt. Commun. 162, 205–210 (1999). doi: 10.1016/S0030-4018(99)00116-9
[103] Kemao, Q., Soon, S. H. & Asundi, A. Smoothing filters in phase-shifting interferometry. Opt. Laser Technol. 35, 649–654 (2003). doi: 10.1016/S0030-3992(03)00113-0
[104] Poon, T. C., Wu, M. H., Shinoda, K. & Suzuki, T. Optical scanning holography. Proc. IEEE 84, 753–764 (1996). doi: 10.1109/5.488744
[105] Kim, Y. S. et al. Speckle-free digital holographic recording of a diffusely reflecting object. Opt. Express 21, 8183–8189 (2013). doi: 10.1364/OE.21.008183
[106] Kim, M. K. Full color natural light holographic camera. Opt. Express 21, 9636–9642 (2013). doi: 10.1364/OE.21.009636
[107] Nguyen, T. H., Edwards, C., Goddard, L. L. & Popescu, G. Quantitative phase imaging with partially coherent illumination. Opt. Lett. 39, 5511–5514 (2014). doi: 10.1364/OL.39.005511
[108] Dubois, F. & Yourassowsky, C. Full off-axis red-green-blue digital holographic microscope with LED illumination. Opt. Lett. 37, 2190–2192 (2012). doi: 10.1364/OL.37.002190
[109] Kim, M. et al. High-speed synthetic aperture microscopy for live cell imaging. Opt. Lett. 36, 148–150 (2011). doi: 10.1364/OL.36.000148
[110] Kang, S. et al. Imaging deep within a scattering medium using collective accumulation of single-scattered waves. Nat. Photonics 9, 253–258 (2015). doi: 10.1038/nphoton.2015.24
[111] Kim, T. et al. White-light diffraction tomography of unlabelled live cells. Nat. Photonics 8, 256–263 (2014). doi: 10.1038/nphoton.2013.350
[112] Redding, B., Choma, M. A. & Cao, H. Spatial coherence of random laser emission. Opt. Lett. 36, 3404–3406 (2011). doi: 10.1364/OL.36.003404
[113] Choi, Y., Yang, T. D., Lee, K. J. & Choi, W. Full-field and single-shot quantitative phase microscopy using dynamic speckle illumination. Opt. Lett. 36, 2465–2467 (2011). doi: 10.1364/OL.36.002465
[114] Bianco, V. et al. Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions. Opt. Lett. 37, 4212–4214 (2012). doi: 10.1364/OL.37.004212
[115] Bianco, V. et al. Clear microfluidics imaging through flowing blood by digital holography. IEEE J. Sel. Top. Quant. Electron 20, 6801507 (2014).
[116] Bianco, V. et al. Imaging adherent cells in the microfluidic channel hidden by flowing RBCs as occluding objects by a holographic method. Lab. Chip 14, 2499–2504 (2014). doi: 10.1039/c4lc00290c
[117] Bianco, V., Marchesano, V., Finizio, A., Paturzo, M. & Ferraro, P. Self-propelling bacteria mimic coherent light decorrelation. Opt. Express 23, 9388–9396 (2015). doi: 10.1364/OE.23.009388
[118] Redding, B., Allen, G., Dufresne, E. R. & Cao, H. Low-loss high-speed speckle reduction using a colloidal dispersion. Appl. Opt. 52, 1168–1172 (2013). doi: 10.1364/AO.52.001168
[119] Bennet, M., Gur, D., Yoon, J., Park, Y. K. & Faivre, D. A bacteria-based remotely tunable photonic device. Adv. Opt. Mater. 5, 1600617 (2017). doi: 10.1002/adom.201600617
[120] Gonzales, R. C. & Woods, R. E. Digital Image Processing 3 edn (Prentice Hall, Upper Saddle River, 2008).
[121] Lee, J. S. Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern. Anal. Mach. Intell. PAMI-2, 165–168 (1980).
[122] Mallat, S. A Wavelet Tour of Signal Processing 2 edn (Academic Press, New York, 1999).
[123] Donoho, D. L. De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41, 613–627 (1995). doi: 10.1109/18.382009
[124] Xie, H., Pierce, L. E. & Ulaby, F. T. SAR speckle reduction using wavelet denoising and Markov random field modeling. IEEE Trans. Geosci. Remote Sens. 40, 2196–2212 (2002). doi: 10.1109/TGRS.2002.802473
[125] Starck, J. L., Candès, E. J. & Donoho, D. L. The curvelet transform for image denoising. IEEE Trans. Image Proc. 11, 670–684 (2002). doi: 10.1109/TIP.2002.1014998
[126] Do, M. N. & Vetterli, M. The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Proc. 14, 2091–2106 (2005). doi: 10.1109/TIP.2005.859376
[127] Frederico, A. & Kaufmann, G. H. Denoising in digital speckle pattern interferometry using wave atoms. Opt. Lett. 32, 1232–1234 (2007). doi: 10.1364/OL.32.001232
[128] Kaufmann, G. H. & Galizzi, G. E. Speckle noise reduction in television holography fringes using wavelet thresholding. Opt. Eng. 35, 9–14 (1996). doi: 10.1117/1.600874
[129] Shulev, A. A., Gotchev, A., Foi, A. & Roussev, I. R. Threshold selection in transform-domain denoising of speckle pattern fringes. In Proc. SPIE 6252, Holography 2005: International Conference on Holography, Optical Recording, and Processing of Information 625220 (SPIE, Varna, 2006).
[130] Barj, E. M., Afifi, M., Idrissi, A. A., Nassim, K. & Rachafi, S. Speckle correlation fringes denoising using stationary wavelet transform. Appl. Wavel. Phase Eval. Tech. Opt. Laser Technol. 38, 506–511 (2006).
[131] Bang, L. T., Li, W. N., Piao, M. L., Alam, M. A. & Kim, N. Noise reduction in digital hologram using wavelet transforms and smooth filter for three-dimensional display. IEEE Photon J. 5, 6800414 (2013). doi: 10.1109/JPHOT.2013.2265979
[132] Buades, A., Coll, B. & Morel, J. M. A review of image denoising algorithms, with a new one. Multiscale Model Simul. 4, 490–530 (2005). doi: 10.1137/040616024
[133] Buades, A., Coll, B. & Morel, J. M. A non-local algorithm for image denoising. In Proc. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 60–65 (IEEE, San Diego, CA, 2005).
[134] Deledalle, C., Denis, L. & Tupin, F. NL-InSAR: nonlocal interferogram estimation. IEEE Trans. Geosci. Remote Sens. 49, 1441–1452 (2011). doi: 10.1109/TGRS.2010.2076376
[135] Coupé, P., Hellier, P., Kervrann, P. & Barillot, C. Nonlocal means-based speckle filtering for ultrasound images. IEEE Trans. Image Proc. 18, 2221–2229 (2009). doi: 10.1109/TIP.2009.2024064
[136] Dabov, K., Foi, A., Katkovnik, V. & Egiazarian, K. Image denoising with block-matching and 3D filtering. In Proc. SPIE 6064, Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning 606414 (SPIE, San Jose, CA, 2006).
[137] Dabov, K., Foi, A., Katkovnik, V. & Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Proc. 16, 2080–2095 (2007). doi: 10.1109/TIP.2007.901238
[138] Katkovnik, V., Foi, A., Egiazarian, K. & Astola, J. From local kernel to nonlocal multiple-model image denoising. Int. J. Comput. Vis. 86, 1–32 (2010). doi: 10.1007/s11263-009-0272-7
[139] Kemao, Q. Windowed Fourier transform for fringe pattern analysis. Appl. Opt. 43, 2695–2702 (2004). doi: 10.1364/AO.43.002695
[140] Huang, L., Kemao, Q., Pan, B. & Asundi, A. K. Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry. Opt. Lasers Eng. 48, 141–148 (2010). doi: 10.1016/j.optlaseng.2009.04.003
[141] Kemao, Q., Nam, L. T. H., Feng, L. & Soon, S. H. Comparative analysis on some filters for wrapped phase maps. Appl. Opt. 46, 7412–7418 (2007). doi: 10.1364/AO.46.007412
[142] Kemao, Q. On window size selection in the windowed Fourier ridges algorithm. Opt. Lasers Eng. 45, 1186–1192 (2007). doi: 10.1016/j.optlaseng.2006.11.005
[143] Kemao, Q. Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations. Opt. Lasers Eng. 45, 304–317 (2007). doi: 10.1016/j.optlaseng.2005.10.012
[144] Yatabe, K. & Oikawa, Y. Convex optimization-based windowed Fourier filtering with multiple windows for wrapped-phase denoising. Appl. Opt. 55, 4632–4641 (2016). doi: 10.1364/AO.55.004632
[145] Perona, P. & Malik, J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pat. Anal. Mach. Intell. 12, 629–639 (1990). doi: 10.1109/34.56205
[146] Gerig, G., Kubler, O., Kikinis, R. & Jolesz, F. A. Nonlinear anisotropic filtering of MRIdata. IEEE Trans. Med. Imag. 11, 221–232 (1992). doi: 10.1109/42.141646
[147] Shamsoddini, A. & Trinder, J. C. Image texture preservation in speckle noise suppression. In ISPRS TC VII Symposium 100 Years ISPRS (ISPRS, Vienna, 2010).
[148] Montrésor, S., Picart, P., Sakharuk, O. & Muravsky, L. Error analysis for noise reduction in 3D deformation measurement with digital color holography. J. Opt. Soc. Am. B 34, B9–B15 (2017).
[149] Ribak, E., Roddier, C., Roddier, F. & Breckinridge, J. B. Signal-to-noise limitations in white light holography. Appl. Opt. 27, 1183–1186 (1988). doi: 10.1364/AO.27.001183
[150] Katkovnik, V. & Egiazarian, K. Sparse phase imaging based on complex domain nonlocal BM3D techniques. Digit. Signal Process. 63, 72–85 (2017). doi: 10.1016/j.dsp.2017.01.002
[151] Katkovnik, V., Ponomarenko, M. & Egiazarian, K. Sparse approximations in complex domain based on BM3D modeling. Signal Process. 141, 96–108 (2017). doi: 10.1016/j.sigpro.2017.05.032