[1] |
Avayu, O. et al. Composite functional metasurfaces for multispectral achromatic optics. Nature Communications 8, 14992 (2017). doi: 10.1038/ncomms14992 |
[2] |
Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513-1515 (2009). doi: 10.1126/science.1177031 |
[3] |
Stärke, P. et al. High-efficiency wideband 3-D on-chip antennas for subterahertz applications demonstrated at 200 GHz. IEEE Transactions on Terahertz Science and Technology 7, 415-423 (2017). doi: 10.1109/TTHZ.2017.2698264 |
[4] |
Hirt, L. et al. Additive manufacturing of metal structures at the micrometer scale. Advanced Materials 29, 1604211 (2017). doi: 10.1002/adma.201604211 |
[5] |
Hahn, V. et al. Rapid assembly of small materials building blocks (Voxels) into large functional 3D metamaterials. Advanced Functional Materials 30, 1907795 (2020). doi: 10.1002/adfm.201907795 |
[6] |
Maruo, S., Nakamura, O. & Kawata, S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Optics Letters 22, 132-134 (1997). doi: 10.1364/OL.22.000132 |
[7] |
Hohmann, J. K. et al. Three-dimensional μ-printing: an enabling technology. Advanced Optical Materials 3, 1488-1507 (2015). doi: 10.1002/adom.201500328 |
[8] |
Waller, E. H. & von Freymann, G. From photoinduced electron transfer to 3D metal microstructures via direct laser writing. Nanophotonics 7, 1259-1277 (2018). doi: 10.1515/nanoph-2017-0134 |
[9] |
He, G. C. et al. The conductive silver nanowires fabricated by two-beam laser direct writing on the flexible sheet. Scientific Reports 7, 41757 (2017). doi: 10.1038/srep41757 |
[10] |
Xu, B. B. et al. Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating. Small 6, 1762-1766 (2010). doi: 10.1002/smll.201000511 |
[11] |
Tabrizi, S. et al. Functional optical plasmonic resonators fabricated via highly photosensitive direct laser reduction. Advanced Optical Materials 4, 529-533 (2016). doi: 10.1002/adom.201500568 |
[12] |
Lee, M. R. et al. Direct metal writing and precise positioning of gold nanoparticles within microfluidic channels for SERS sensing of gaseous analytes. ACS Applied Materials & Interfaces 9, 39584-39593 (2017). |
[13] |
Lu, W. E. et al. Femtosecond direct laser writing of gold nanostructures by ionic liquid assisted multiphoton photoreduction. Optical Materials Express 3, 1660-1673 (2013). doi: 10.1364/OME.3.001660 |
[14] |
Tanaka, T., Ishikawa, A. &Kawata, S. Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure. Applied Physics Letters 88, 081107 (2006). doi: 10.1063/1.2177636 |
[15] |
Liu, L. P. et al. Fast fabrication of silver helical metamaterial with single-exposure femtosecond laser photoreduction. Nanophotonics 8, 1087-1093 (2019). doi: 10.1515/nanoph-2019-0079 |
[16] |
Barton, P. et al. Fabrication of silver nanostructures using femtosecond laser-induced photoreduction. Nanotechnology 28, 505302 (2017). doi: 10.1088/1361-6528/aa977b |
[17] |
Blasco, E. et al. Fabrication of conductive 3D gold-containing microstructures via direct laser writing. Advanced Materials 28, 3593-3595 (2016). |
[18] |
Waller, E. H. et al. Functional metallic microcomponents via liquid-phase multiphoton direct laser writing: a review. Micromachines 10, 827 (2019). doi: 10.3390/mi10120827 |
[19] |
Luo, Z. J. et al. Direct laser writing of nanoscale undoped conductive polymer. Nanotechnology 31, 255301 (2020). doi: 10.1088/1361-6528/ab7de4 |
[20] |
Waller, E. H., Renner, M. & von Freymann, G. Active aberration- and point-spread-function control in direct laser writing. Optics Express 20, 24949-24956 (2012). doi: 10.1364/OE.20.024949 |