[1] |
Schmidtke, K. & Schmidtke, H. J. Moore’s law redefined for AI/HPC. Proceedings of 2024 Optical Fiber Communications Conference and Exhibition (OFC). San Diego, CA, USA: IEEE, 2024, 1-3. |
[2] |
C. St-Arnault, et al. Net 3.2 Tbps 225 Gbaud PAM4 O-Band IM/DD 2 km Transmission Using FR8 and DR8 with a CMOS 3 nm SerDes and TFLN Modulators, Proceedings of the Optical Fiber Communications Conference and Exhibition (OFC) 2025. San Diego, CA, USA: Optica Publishing Group, 2025, Th4B.1, doi: 10.1364/OFC.2025.Th4B.1 |
[3] |
Berikaa, E. et al. TFLN MZMs and next-gen DACs: enabling beyond 400 Gbps IMDD O-band and C-band transmission. IEEE Photonics Technology Letters 35, 850-853 (2023). doi: 10.1109/LPT.2023.3285881 |
[4] |
Kulmer, L. et al. Single carrier net 400 Gbit/s IM/DD over 400 m fiber enabled by Plasmonic Mach-zehnder modulator. Proceedings of 2024 Optical Fiber Communications Conference and Exhibition (OFC). San Diego, CA, USA: IEEE, 2024, 1-3. |
[5] |
Uchiyama, A. et al. Demonstration of 155 Gbaud PAM4 and PAM6 EML with narrow high-mesa EA modulator for 400 Gbps per lane transmission. Proceedings of 2024 Optical Fiber Communications Conference and Exhibition (OFC). San Diego, CA, USA: IEEE, 2024, 1-3. |
[6] |
Liu, H. X. et al. Ultra-compact lithium niobate photonic chip for high-capacity and energy-efficient wavelength-division-multiplexing transmitters. Light: Advanced Manufacturing 4, 133-142 (2023). |
[7] |
Zhu, D. et al. Integrated photonics on thin-film lithium niobate. Advances in Optics and Photonics 13, 242-352 (2021). doi: 10.1364/AOP.411024 |
[8] |
Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101-104 (2018). doi: 10.1038/s41586-018-0551-y |
[9] |
Kharel, P. et al. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes: erratum. Optica 8, 1218-1218 (2021). doi: 10.1364/OPTICA.440484 |
[10] |
Juneghani, F. A. et al. Thin-film lithium niobate optical modulators with an extrapolated bandwidth of 170 GHz. Advanced Photonics Research 4, 2200216 (2023). doi: 10.1002/adpr.202200216 |
[11] |
Liu, Y. et al. Low Vπ thin-film lithium niobate modulator fabricated with photolithography. Optics Express 29, 6320-6329 (2021). doi: 10.1364/OE.414250 |
[12] |
Zhou, J. J. et al. High-performance thin-film lithium niobate mach-zehnder modulator on 8-inch silicon substrate. Proceedings of the Optical Fiber Communication Conference (OFC) 2024. San Diego, CA, USA: Optica Publishing Group, 2024, M3K. 2, doi: 10.1364/OFC.2024.M3K.2 |
[13] |
Xu, M. Y. et al. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission. Optica 9, 61-62 (2022). doi: 10.1364/OPTICA.449691 |
[14] |
Liu, X. C. et al. Wideband thin-film lithium niobate modulator with low half-wave-voltage length product. Chinese Optics Letters 19, 060016 (2021). doi: 10.3788/COL202119.060016 |
[15] |
Chen, G. X. et al. High performance thin-film lithium niobate modulator on a silicon substrate using periodic capacitively loaded traveling-wave electrode. APL Photonics 7, 026103 (2022). doi: 10.1063/5.0077232 |
[16] |
Tang, Y. Q. et al. High performance thin-film lithium niobate modulator with suppressed slot-line mode on quartz substrate fabricated by photolithography. Journal of Lightwave Technology 42, 636-647 (2025). doi: 10.1109/JLT.2024.3453032 |