[1] Born, M. & Emil, W. Principles of Optics 6th edn (Cambridge University Press, 1997).
[2] Abramovici, A. et al. LIGO: the laser interferometer gravitational-wave observatory. Science 256, 325–333 (1992). doi: 10.1126/science.256.5055.325
[3] Zhong, H. S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).
[4] Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713
[5] Lin, D. M. et al. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014). doi: 10.1126/science.1253213
[6] Liu, L. X. et al. Broadband metasurfaces with simultaneous control of phase and amplitude. Adv. Mater. 26, 5031–5036 (2014). doi: 10.1002/adma.201401484
[7] Du, L. P. et al. Broadband chirality-coded meta-aperture for photon-spin resolving. Nat. Commun. 6, 10051 (2015). doi: 10.1038/ncomms10051
[8] Arbabi, A. et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015). doi: 10.1038/nnano.2015.186
[9] Minovich, A. E. et al. Functional and nonlinear optical metasurfaces. Laser Photonics Rev. 9, 195–213 (2015). doi: 10.1002/lpor.201400402
[10] Zhang, L. et al. Advances in full control of electromagnetic waves with metasurfaces. Adv. Opt. Mater. 4, 818–833 (2016). doi: 10.1002/adom.201500690
[11] Luo, X. G. et al. Subwavelength interference of light on structured surfaces. Adv. Opt. Photonics 10, 757–842 (2018). doi: 10.1364/AOP.10.000757
[12] Chen, S. Q. et al. Metasurface-empowered optical multiplexing and multifunction. Adv. Mater. 32, 1805912 (2020). doi: 10.1002/adma.201805912
[13] Shi, T. et al. All-dielectric kissing-dimer metagratings for asymmetric high diffraction. Adv. Opt. Mater. 7, 1901389 (2019). doi: 10.1002/adom.201901389
[14] Fan, Q. B. et al. Independent amplitude control of arbitrary orthogonal states of polarization via dielectric metasurfaces. Phys. Rev. Lett. 125, 267402 (2020). doi: 10.1103/PhysRevLett.125.267402
[15] Du, J. J. et al. Optical beam steering based on the symmetry of resonant modes of nanoparticles. Phys. Rev. Lett. 106, 203903 (2011). doi: 10.1103/PhysRevLett.106.203903
[16] Ni, X. J., Kildishev, A. V. & Shalaev, V. M. Metasurface holograms for visible light. Nat. Commun. 4, 2807 (2013). doi: 10.1038/ncomms3807
[17] Karimi, E. et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci. Appl. 3, e167 (2014). doi: 10.1038/lsa.2014.48
[18] Zheng, G. X. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308–312 (2015). doi: 10.1038/nnano.2015.2
[19] Khorasaninejad, M. & Capasso, F. Metalenses: versatile multifunctional photonic components. Science 358, eaam8100 (2017). doi: 10.1126/science.aam8100
[20] Luo, X. G. Engineering optics 2.0: a revolution in optical materials, devices, and systems. ACS Photonics 5, 4724–4738 (2018). doi: 10.1021/acsphotonics.8b01036
[21] Sun, S. L. et al. Electromagnetic metasurfaces: physics and applications. Adv. Opt. Photonics 11, 380–479 (2019). doi: 10.1364/AOP.11.000380
[22] Cao, X. L. et al. Electric symmetric dipole modes enabling retroreflection from an array consisting of homogeneous isotropic linear dielectric rods. Adv. Opt. Mater. 8, 2000452 (2020). doi: 10.1002/adom.202000452
[23] Li, N. X. et al. Large-area metasurface on CMOS-compatible fabrication platform: driving flat optics from lab to fab. Nanophotonics 9, 3071–3087 (2020). doi: 10.1515/nanoph-2020-0063
[24] Arbabi, A. et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun. 7, 13682 (2016). doi: 10.1038/ncomms13682
[25] Pahlevaninezhad, H. et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photonics 12, 540–547 (2018). doi: 10.1038/s41566-018-0224-2
[26] Shrestha, S. et al. Broadband achromatic dielectric metalenses. Light Sci. Appl. 7, 85 (2018). doi: 10.1038/s41377-018-0078-x
[27] Lee, G. Y. et al. Metasurface eyepiece for augmented reality. Nat. Commun. 9, 4562 (2018). doi: 10.1038/s41467-018-07011-5
[28] Wang, S. M. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227–232 (2018). doi: 10.1038/s41565-017-0052-4
[29] Zhang, L. et al. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics. Nat. Commun. 9, 1481 (2018). doi: 10.1038/s41467-018-03831-7
[30] Fan, Z. B. et al. A broadband achromatic metalens array for integral imaging in the visible. Light Sci. Appl. 8, 67 (2019). doi: 10.1038/s41377-019-0178-2
[31] Liu, M. Z. et al. Polarization-independent infrared micro-lens array based on all-silicon metasurfaces. Opt. Express 27, 10738–10744 (2019). doi: 10.1364/OE.27.010738
[32] Lee, G. Y. et al. Complete amplitude and phase control of light using broadband holographic metasurfaces. Nanoscale 10, 4237–4245 (2018). doi: 10.1039/C7NR07154J
[33] Xu, H. X. et al. Chirality-assisted high-efficiency metasurfaces with independent control of phase, amplitude, and polarization. Adv. Opt. Mater. 7, 1801479 (2019).
[34] Bao, Y. J. et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control. Light Sci. Appl. 8, 95 (2019). doi: 10.1038/s41377-019-0206-2
[35] Overvig, A. C. et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase. Light Sci. Appl. 8, 92 (2019). doi: 10.1038/s41377-019-0201-7
[36] Zhang, F. et al. Simultaneous full-color printing and holography enabled by centimeter-scale plasmonic metasurfaces. Adv. Sci. 7, 1903156 (2020). doi: 10.1002/advs.201903156
[37] Deng, L. G. et al. Malus-metasurface-assisted polarization multiplexing. Light Sci. Appl. 9, 101 (2020). doi: 10.1038/s41377-020-0327-7
[38] Yu, L. G. et al. Spin angular momentum controlled multifunctional all-dielectric metasurface doublet. Laser Photonics Rev. 14, 1900324 (2020). doi: 10.1002/lpor.201900324
[39] Chen, R. et al. Multifunctional metasurface: coplanar embedded design for metalens and nanoprinted display. ACS Photonics 7, 1171–1177 (2020). doi: 10.1021/acsphotonics.9b01795
[40] Huo, P. C. et al. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging. Nano Lett. 20, 2791–2798 (2020). doi: 10.1021/acs.nanolett.0c00471
[41] Mueller, J. P. B. et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett. 118, 113901 (2017). doi: 10.1103/PhysRevLett.118.113901
[42] Zhao, R. Z. et al. Multichannel vectorial holographic display and encryption. Light Sci. Appl. 7, 95 (2018). doi: 10.1038/s41377-018-0091-0
[43] Feng, H. et al. Spin-switched three-dimensional full-color scenes based on a dielectric meta-hologram. ACS Photonics 6, 2910–2916 (2019). doi: 10.1021/acsphotonics.9b01017
[44] Li, Z. L. et al. Three-channel metasurfaces for simultaneous meta-holography and meta-nanoprinting: a single-cell design approach. Laser Photonics Rev. 14, 2000032 (2020). doi: 10.1002/lpor.202000032
[45] Song, Q. H. et al. Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces. Nat. Commun. 11, 2651 (2020). doi: 10.1038/s41467-020-16437-9
[46] Huo, P. C. et al. Photonic spin-controlled generation and transformation of 3D optical polarization topologies enabled by all-dielectric metasurfaces. Nanoscale 11, 10646–10654 (2019). doi: 10.1039/C8NR09697J
[47] Fan, Q. B. et al. Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible. Nano Lett. 19, 1158–1165 (2019). doi: 10.1021/acs.nanolett.8b04571
[48] Deng, Z. L. et al. Diatomic metasurface for vectorial holography. Nano Lett. 18, 2885–2892 (2018). doi: 10.1021/acs.nanolett.8b00047
[49] Deng, Z. L. et al. Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces. Adv. Funct. Mater. 30, 1910610 (2020). doi: 10.1002/adfm.201910610
[50] Gerchberg, R. W. & Saxton, W. O. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–246 (1972). http://ci.nii.ac.jp/naid/10025518647/#cit