[1] |
Ghigo, M. et al. Ion figuring of large prototype mirror segments for the E-ELT. Proceedings of SPIE 9151, Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation. Montréal, Quebec, Canada: SPIE, 2014, 225-236. |
[2] |
Kim, D. et al. Advances in optical engineering for future telescopes. Opto-Electronic Advances 4, 210040 (2021). |
[3] |
Weiser, M. Ion beam figuring for lithography optics. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms 267, 1390-1393 (2009). |
[4] |
Baglin, J. E. E. Ion beam nanoscale fabrication and lithography-a review. Applied Surface Science 258, 4103-4111 (2012). |
[5] |
Wang, T. Y. et al. Hybrid height and slope figuring method for grazing-incidence reflective optics. Journal of Synchrotron Radiation 30, 65-75 (2023). |
[6] |
Yamauchi, K. et al. Focusing mirror for coherent hard X-rays. in Synchrotron Light Sources and Free-Electron Lasers: Accelerator Physics, Instrumentation and Science Applications (eds Jaeschke, E. J. et al. ) (Cham: Springer, 2020). |
[7] |
Ke, X. L. et al. Review on robot-assisted polishing: Status and future trends. Robotics and Computer-Integrated Manufacturing 80, 102482 (2023). |
[8] |
Cheng, H. B. Independent Variables for Optical Surfacing Systems: Synthesis, Characterization and Application. (Berlin: Springer, 2016). |
[9] |
Zhu, W. L. & Beaucamp, A. Compliant grinding and polishing: a review. International Journal of Machine Tools and Manufacture 158, 103634 (2020). |
[10] |
Jones, R. A. Optimization of computer controlled polishing. Applied Optics 16, 218-224 (1977). |
[11] |
Kim, D. W., Kim, S. W. & Burge, J. H. Non-sequential optimization technique for a computer controlled optical surfacing process using multiple tool influence functions. Optics Express 17, 21850-21866 (2009). |
[12] |
Kim, D. W. & Burge, J. H. Rigid conformal polishing tool using non-linear visco-elastic effect. Optics Express 18, 2242-2257 (2010). |
[13] |
Wang, C. J. et al. Improved semirigid bonnet tool for high-efficiency polishing on large aspheric optics. The International Journal of Advanced Manufacturing Technology 88, 1607-1617 (2017). |
[14] |
Negi, V. S. et al. Parametric removal rate survey study and numerical modeling for deterministic optics manufacturing. Optics Express 28, 26733-26749 (2020). |
[15] |
Beaucamp, A. & Namba, Y. Super-smooth finishing of diamond turned hard X-ray molding dies by combined fluid jet and bonnet polishing. CIRP Annals 62, 315-318 (2013). |
[16] |
Li, L. X. et al. Optimized dwell time algorithm in magnetorheological finishing. The International Journal of Advanced Manufacturing Technology 81, 833-841 (2015). |
[17] |
Song, C., Dai, Y. F. & Peng, X. Q. Model and algorithm based on accurate realization of dwell time in magnetorheological finishing. Applied Optics 49, 3676-3683 (2010). |
[18] |
Wan, S. L. et al. Novel magic angle-step state and mechanism for restraining the path ripple of magnetorheological finishing. International Journal of Machine Tools and Manufacture 161, 103673 (2021). |
[19] |
Demmler, M. et al. Ion Beam figuring (IBF) for high precision optics. Proceedings of SPIE 7591, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics III. San Francisco, California, United States: SPIE, 2010, 203-211. |
[20] |
Wilson, S. R. & McNeil, J. R. Neutral ion beam figuring of large optical surfaces. Optical Fabrication and Testing 1987. Rochester: Optica Publishing Group, 1987, FAA4. |
[21] |
Wang, T. Y. et al. Development of a position-velocity-time-modulated two-dimensional ion beam figuring system for synchrotron x-ray mirror fabrication. Applied Optics 59, 3306-3314 (2020). |
[22] |
Cao, Z. C. & Cheung, C. F. Theoretical modelling and analysis of the material removal characteristics in fluid jet polishing. International Journal of Mechanical Sciences 89, 158-166 (2014). |
[23] |
Mizoue, Y., Sencer, B. & Beaucamp, A. Identification and optimization of CNC dynamics in time-dependent machining processes and its validation to fluid jet polishing. International Journal of Machine Tools and Manufacture 159, 103648 (2020). |
[24] |
Cao, Z. C., Cheung, C. F. & Ren, M. J. Modelling and characterization of surface generation in fluid jet polishing. Precision Engineering 43, 406-417 (2016). |
[25] |
Preston, F. W. The theory and design of plate glass polishing machines. Journal of the Society of Glass Technology 11, 214-256 (1927). |
[26] |
Ruiz, P. et al. Variational Bayesian blind image deconvolution: a review. Digital Signal Processing 47, 116-127 (2015). |
[27] |
Kundur, D. & Hatzinakos, D. Blind image deconvolution. IEEE Signal Processing Magazine 13, 43-64 (1996). |
[28] |
Jiao, C. J., Li, S. Y. & Xie, X. H. Algorithm for ion beam figuring of low-gradient mirrors. Applied Optics 48, 4090-4096 (2009). |
[29] |
Li, L. X. et al. Positive dwell time algorithm with minimum equal extra material removal in deterministic optical surfacing technology. Applied Optics 56, 9098-9104 (2017). |
[30] |
Zhang, Y. F. et al. Dwell time algorithm based on bounded constrained least squares under dynamic performance constraints of machine tool in deterministic optical finishing. International Journal of Precision Engineering and Manufacturing-Green Technology 8, 1415-1427 (2021). |
[31] |
Kang, H. et al. Genetic algorithm-powered non-sequential dwell time optimization for large optics fabrication. Optics Express 30, 16442-16458 (2022). |
[32] |
Wang, T. Y. et al. Universal dwell time optimization for deterministic optics fabrication. Optics Express 29, 38737-38757 (2021). |
[33] |
Beaucamp, A. et al. Reduction of mid-spatial frequency errors on aspheric and freeform optics by circular-random path polishing. Optics Express 29, 29802-29812 (2021). |
[34] |
Negi, V. S. et al. Random adaptive tool path for zonal optics fabrication. Optics Express 30, 29295-29309 (2022). |
[35] |
Dunn, C. R. & Walker, D. D. Pseudo-random tool paths for CNC sub-aperture polishing and other applications. Optics Express 16, 18942-18949 (2008). |
[36] |
Wan, K. P. et al. Sparse bi-step raster path for suppressing the mid-spatial-frequency error by fluid jet polishing. Optics Express 30, 6603-6616 (2022). |
[37] |
Allen, L. N. & Romig, H. W. Demonstration of an ion-figuring process. Proceedings of 1333, Advanced Optical Manufacturing and Testing. San Diego, CA, United States: SPIE, 1990, 22-33. |
[38] |
Allen, L. N. & Keim, R. E. An ion figuring system for large optic fabrication. Proceedings of SPIE 1168, Current Developments in Optical Engineering and Commercial Optics. San Diego, United States: SPIE, 1989, 33-50. |
[39] |
Guan, C. L. et al. Ion beam figuring strategy for aluminum optics with minimal extra material removal. Applied Optics 61, 3542-3549 (2022). |
[40] |
Zhou, L. et al. Optimum removal in ion-beam figuring. Precision Engineering 34, 474-479 (2010). |
[41] |
Wang, C. J. et al. Dwell-time algorithm for polishing large optics. Applied Optics 53, 4752-4760 (2014). |
[42] |
Jiao, C. J. et al. Bayesian principle based dwell time algorithm for ion beam figuring of low gradient mirrors. Journal of Mechanical Engineering 45, 253-259 (2009). |
[43] |
Haberl, A. & Rascher, R. Yet one more dwell time algorithm. Proceedings of SPIE 10326, Fourth European Seminar on Precision Optics Manufacturing. Teisnach, Germany: SPIE, 2017. |
[44] |
Wang, T. Y. et al. RIFTA: a robust iterative Fourier transform-based dwell time algorithm for ultra-precision ion beam figuring of synchrotron mirrors. Scientific Reports 10, 8135 (2020). |
[45] |
Wang, T. Y. et al. Rise: robust iterative surface extension for sub-nanometer X-ray mirror fabrication. Optics Express 29, 15114-15132 (2021). |
[46] |
Shanbhag, P. M. et al. Ion-beam machining of millimeter scale optics. Applied Optics 39, 599-611 (2000). |
[47] |
Drueding, T. W., Bifano, T. G. & Fawcett, S. C. Contouring algorithm for ion figuring. Precision Engineering 17, 10-21 (1995). |
[48] |
Wang, Y. J. et al. An elementary approximation of dwell time algorithm for ultra-precision computer-controlled optical surfacing. Micromachines 12, 471 (2021). |
[49] |
Fang, H., Guo, P. J. & Yu, J. C. Dwell function algorithm in fluid jet polishing. Applied Optics 45, 4291-4296 (2006). |
[50] |
Deng, W. J. et al. Dwell time algorithm based on matrix algebra and regularization method. Optics and Precision Engineering 15, 1009-1015 (2007). |
[51] |
Yang, M. & Lee, H. Dwell time algorithm for computer-controlled polishing of small axis-symmetrical aspherical lens mold. Optical Engineering 40, 1936-1943 (2001). |
[52] |
Dong, Z. C., Cheng, H. B. & Tam, H. Y. Robust linear equation dwell time model compatible with large scale discrete surface error matrix. Applied Optics 54, 2747-2756 (2015). |
[53] |
Wu, J. F. et al. Dwell time algorithm in ion beam figuring. Applied Optics 48, 3930-3937 (2009). |
[54] |
Zhou, L. et al. Model and method to determine dwell time in ion beam figuring. Nanotechnology and Precision Engineering 5, 107-112 (2007). |
[55] |
Zhou, L. et al. New figuring model based on surface slope profile for grazing-incidence reflective optics. Journal of Synchrotron Radiation 23, 1087-1090 (2016). |
[56] |
Dong, Z. C., Cheng, H. B. & Tam, H. Y. Modified dwell time optimization model and its applications in subaperture polishing. Applied Optics 53, 3213-3224 (2014). |
[57] |
Carnal, C. L. , Egert, C. M. & Hylton, K. W. Advanced matrix-based algorithm for ion-beam milling of optical components. Proceedings of 1752, Current Developments in Optical Design and Optical Engineering II. San Diego, CA, United States: SPIE, 1992, 54-62. |
[58] |
Ke, X. L. et al. Multi-tool optimization for computer controlled optical surfacing. Optics Express 30, 16957-16972 (2022). |
[59] |
Wang, T. Y. et al. Study on an effective one-dimensional ion-beam figuring method. Optics Express 27, 15368-15381 (2019). |
[60] |
Li, Y. & Zhou, L. Solution algorithm of dwell time in slope-based figuring model. Proceedings of SPIE 10460, AOPC 2017: Optoelectronics and Micro/Nano-Optics. Beijing, China: SPIE, 2017, 475-482. |
[61] |
Zhu, W. L. & Beaucamp, A. Zernike mapping of optimum dwell time in deterministic fabrication of freeform optics. Optics Express 27, 28692-28706 (2019). |
[62] |
Li, Z. L. et al. B-spline surface approximation method for achieving optimum dwell time in deterministic polishing. Journal of Materials Processing Technology 318, 118031 (2023). |
[63] |
Van Cittert, P. H. Zum einfluß der spaltbreite auf die intensitätsverteilung in spektrallinien. II. Zeitschrift für Physik 69, 298-308 (1931). |
[64] |
Hill, N. R. & Ioup, G. E. Convergence of the van cittert iterative method of deconvolution. Journal of the Optical Society of America 66, 487-489 (1976). |
[65] |
Jansson, P. A. Method for determining the response function of a high-resolution infrared spectrometer. Journal of the Optical Society of America 60, 184-191 (1970). |
[66] |
Xu, C. Q., Aissaoui, I. & Jacquey, S. Algebraic analysis of the van cittert iterative method of deconvolution with a general relaxation factor. Journal of the Optical Society of America A 11, 2804-2808 (1994). |
[67] |
Schafer, R. W., Mersereau, R. M. & Richards, M. A. Constrained iterative restoration algorithms. Proceedings of the IEEE 69, 432-450 (1981). |
[68] |
Pullen, W. C. et al. Statistical tool size study for computer-controlled optical surfacing. Photonics 10, 286 (2023). doi: 10.3390/photonics10030286 |
[69] |
Dong, Z. C., Cheng, H. B. & Tam, H. Y. Modified subaperture tool influence functions of a flat-pitch polisher with reverse-calculated material removal rate. Applied Optics 53, 2455-2464 (2014). doi: 10.1364/AO.53.002455 |
[70] |
Liu, Y. et al. Edge effect of optical surfacing process with different data extension algorithms. Frontiers of Optoelectronics 7, 77-83 (2014). |
[71] |
Shu, L. X. , Wu, F. & Shi, C. Y. Optimization of the edge extension in dwell time algorithm for ion beam figuring. Proceedings of SPIE 8416, 6th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies. Xiamen, China: SPIE, 2012, 593-598. |
[72] |
Molina, R. et al. Image restoration in astronomy: a Bayesian perspective. IEEE Signal Processing Magazine 18, 11-29 (2001). |
[73] |
Lucy, L. B. An iterative technique for the rectification of observed distributions. The Astronomical Journal 79, 745 (1974). |
[74] |
Richardson, W. H. Bayesian-based iterative method of image restoration. Journal of the Optical Society of America 62, 55-59 (1972). doi: 10.1364/JOSA.62.000055 |
[75] |
Bracewell, R. N. & Roberts, J. A. Aerial smoothing in radio astronomy. Australian Journal of Physics 7, 615-640 (1954). doi: 10.1071/PH540615 |
[76] |
Nelder, J. A. & Mead, R. A simplex method for function minimization. The Computer Journal 7, 308-313 (1965). doi: 10.1093/comjnl/7.4.308 |
[77] |
Audet, C. & Dennis, J. E. Jr. Analysis of generalized pattern searches. SIAM Journal on Optimization 13, 889-903 (2002). |
[78] |
Press, W. H. Numerical Recipes: The Art of Scientific Computing. 3rd edn. (Cambridge: Cambridge University Press, 2007). |
[79] |
Marks, R. J. Gerchberg's extrapolation algorithm in two dimensions. Applied Optics 20, 1815-1820 (1981). doi: 10.1364/AO.20.001815 |
[80] |
Qian, X. J. et al. Investigation of dwell time based on Lucy-Richardson algorithm and gercherg surface continuation algorithm. Proceedings of SPIE 11568, Optics Ultra Precision Manufacturing and Testing. Beijing, China: SPIE, 2020, 264-269. |
[81] |
Zhou, L. et al. Methods to extend surface error map in dwell time algorithm. Proceedings of the 16th International Conference & Exhibition. Nottingham, UK, 2016. |
[82] |
Paige, C. C. & Saunders, M. A. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software 8, 43-71 (1982). |
[83] |
Fong, D. C. L. & Saunders, M. LSMR: An iterative algorithm for sparse least-squares problems. SIAM Journal on Scientific Computing 33, 2950-2971 (2011). |
[84] |
Wang, T. Y. et al. Study on the performances of dwell time algorithms in Ion Beam figuring. Proceedings of SPIE 11175, Optifab 2019. Rochester, New York, United States: SPIE, 2019, 109-118. |
[85] |
Lee, J., Yoo, J. & Lee, K. Numerical simulation of the nano-second pulsed laser ablation process based on the finite element thermal analysis. Journal of Mechanical Science and Technology 28, 1797-1802 (2014). doi: 10.1007/s12206-014-0326-9 |
[86] |
Wang, T. Y. et al. Computer-controlled finishing via dynamically constraint position-velocity-time scheduler. Journal of Manufacturing Processes 87, 97-105 (2023). doi: 10.1016/j.jmapro.2023.01.005 |
[87] |
Wang, T. Y. et al. Ion beam figuring system for synchrotron x-ray mirrors achieving sub-0.2-µrad and sub-0.5-nm root mean square. Nanomanufacturing and Metrology 6, (2023). |
[88] |
Pan, R. et al. Modification of tool influence function of bonnet polishing based on interfacial friction coefficient. International Journal of Machine Tools and Manufacture 124, 43-52 (2018). doi: 10.1016/j.ijmachtools.2017.09.003 |
[89] |
Kim, D. W. et al. Parametric modeling of edge effects for polishing tool influence functions. Optics Express 17, 5656-5665 (2009). doi: 10.1364/OE.17.005656 |